8 research outputs found

    Ancestral diversity improves discovery and fine-mapping of genetic loci for anthropometric traits — The Hispanic/Latino Anthropometry Consortium

    Get PDF
    Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (stage 1, n = 59,771) and generalized our findings in 9 additional studies (stage 2, n = 10,538). We conducted a trans-ancestral GWAS with summary statistics from HISLA stage 1 and existing consortia of European and African ancestries. In our HISLA stage 1 + 2 analyses, we discovered one BMI locus, as well as two BMI signals and another height signal each within established anthropometric loci. In our trans-ancestral meta-analysis, we discovered three BMI loci, one height locus, and one WHRadjBMI locus. We also identified 3 secondary signals for BMI, 28 for height, and 2 for WHRadjBMI in established loci. We show that 336 known BMI, 1,177 known height, and 143 known WHRadjBMI (combined) SNPs demonstrated suggestive transferability (nominal significance and effect estimate directional consistency) in Hispanic/Latino adults. Of these, 36 BMI, 124 height, and 11 WHRadjBMI SNPs were significant after trait-specific Bonferroni correction. Trans-ancestral meta-analysis of the three ancestries showed a small-to-moderate impact of uncorrected population stratification on the resulting effect size estimates. Our findings demonstrate that future studies may also benefit from leveraging diverse ancestries and differences in linkage disequilibrium patterns to discover novel loci and additional signals with less residual population stratification

    Beam Life Time

    No full text

    Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales

    No full text
    International audienceCollective processes in plasmas often induce micro-instabilities that play an important role in many space or laboratory plasma environments. Particularly notable is the Weibel-type current filamentation instability, which is believed to drive the creation of collisionless shocks in weakly magnetized astrophysical plasmas. Here, this instability class is studied through interactions of ultraintense and short laser pulses with solid foils, leading to localized generation of MeV electrons. Proton radiographic measurements of both low-and high-resistivity targets show two distinct, superimposed electromagnetic field patterns arising from the interpenetration of the MeV electrons and the background plasma. Particle-in-cell simulations and theoretical estimates suggest that the collisionless Weibel instability building up in the dilute expanding plasmas formed at the target surfaces causes the observed azimuthally symmetric electromagnetic filaments. For a sufficiently high resistivity of the target foil, an additional resistive instability is triggered in the bulk target, giving rise to radially elongated filaments. The data reveal the growth of both filamentation instabilities over large temporal (tens of picoseconds) and spatial (hundreds of microns) scales

    Transport Methods and Interactions for Space Radiations

    No full text
    corecore