52 research outputs found

    Efficacy of adenovirally expressed soluble TRAIL in human glioma organotypic slice culture and glioma xenografts

    Get PDF
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in malignant cells, including gliomas, and is currently in anticancer clinical trials. However, the full-length and tagged forms of TRAIL, unlike the untagged ligand (soluble TRAIL (sTRAIL)), exhibits toxicity against normal cells. Here, we report the generation and testing of an adenovirus (AdsTRAIL) that expresses untagged sTRAIL in an intracranial xenograft model and a human glioma organotypic slice culture model. AdsTRAIL efficiently induced apoptosis in glioma cell lines, including those resistant to sTRAIL, but not in normal human astrocytes (NHAs). It inhibited anchorage-independent glioma growth and exerted a bystander effect in transwell assays. Intratumoral injections of AdsTRAIL in a rodent intracranial glioma model resulted in reduced tumor growth and improved survival compared with Ad-enhanced green fluorescent protein (EGFP)- or vehicle-treated controls without toxicity. Human glioma organotypic slices treated with AdsTRAIL demonstrated apoptosis induction and caspase activation

    Extended-schedule dose-dense temozolomide in refractory gliomas

    Get PDF
    This multicenter phase II study conducted by the Spanish Neuro-Oncology Group evaluated the activity of an extended, dose-dense temozolomide regimen in patients with temozolomide-refractory malignant glioma. Adult patients (at least 18 years of age) with WHO grade III or IV glioma and a Karnofsky Performance Status of 60 or higher were treated with temozolomide (85 mg/m2/day) for 21 consecutive days every 28-day cycle until disease progression or unacceptable toxicity. All patients had developed progressive disease either during or less than 3 months after completing previous temozolomide treatment. Forty-seven patients were treated with a median of 2 (range, 1–13) cycles of temozolomide. Before study entry, patients had received a median of 6 cycles of temozolomide: 39 (83%) as part of initial therapy and 23 (49%) as second-line therapy. Three patients (6.4%) had a partial response with durations of 8.0, 3.5, and 3.2 months; 15 patients (31.9%) had stable disease with a median duration of 2.1 months, including 2 patients with stable disease (SD) for greater than 6 months (14 and 16 months). Median time to progression was 2 months, and median overall survival from study entry was 5.1 months. The 6-month progression-free survival rate was 16.7%. The most common hematologic toxicities were lymphopenia, thrombocytopenia, and leukopenia. Lymphopenia occurred in 83% of patients and was grade 3 in 28%, but no opportunistic infections occurred. In conclusion, this extended dose-dense schedule of temozolomide appears to have modest activity in patients refractory to previous treatment with temozolomide and is associated with manageable toxicity

    TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells

    Get PDF
    Tumour growth is tightly related to new blood vessel formation, tissue remodelling and invasiveness capacity. A number of tissular factors fuel the growth of glioblastoma multiforme, the most aggressive brain neoplasm. In fact, gene array analyses demonstrated that the proapoptotic cytokine tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) inhibited mRNA expression of VEGF, along with those of matrix metalloproteinase-2 (MMP-2), its inhibitor tissue inhibitor of matrix metalloproteinases-2 (TIMP-2), as well as the tumour invasiveness-related gene secreted protein acid rich in cysteine (SPARC) in different human glioblastoma cell lines. Particularly, VEGF mRNA and protein expression and release from glioblastoma cells were also inhibited by TRAIL. The latter also exerted antimitogenic effects on human umbilical vein endothelial cells (HUVECs). With the same cells, TRAIL inhibited new vessel formation in the in vitro matrigel model, as well as it exerted powerful inhibition of blood vessel formation induced by an angiogenic cocktail administered in subcutaneous pellets in vivo in the C57 mouse. Moreover, the expression of MMP-2, its inhibitor TIMP-2 and the tumour invasiveness-related protein SPARC were effectively inhibited by TRAIL in glioblastoma cell lines. In conclusion, our data indicate that TRAIL inhibits the orchestra of factors contributing to glioblastoma biological aggressiveness. Thus, the TRAIL system could be regarded as a molecular target to exploit for innovative therapy of this type of tumour

    Discrimination between two different grades of human glioma based on blood vessel infrared spectral imaging

    Get PDF
    Gliomas are brain tumours classified into four grades with increasing malignancy from I to IV. The development and the progression of malignant glioma largely depend on the tumour vascularization. Due to their tissue heterogeneity, glioma cases can be difficult to classify into a specific grade using the gold standard of histological observation, hence the need to base classification on a quantitative and reliable analytical method for accurately grading the disease. Previous works focused specifically on vascularization study by Fourier transform infrared (FTIR) spectroscopy, proving this method to be a way forward to detect biochemical changes in the tumour tissue not detectable by visual techniques. In this project, we employed FTIR imaging using a focal plane array (FPA) detector and globar source to analyse large areas of glioma tumour tissue sections via molecular fingerprinting in view of helping to define markers of the tumour grade. Unsupervised multivariate analysis (hierarchical cluster analysis and principal component analysis) of blood vessel spectral data, retrieved from the FPA images, revealed the fine structure of the borderline between two areas identified by a pathologist as grades III and IV. Spectroscopic indicators are found capable of discriminating different areas in the tumour tissue and are proposed as biomolecular markers for potential future use of grading gliomas. Graphical Abstract Infrared imaging of glioma blood vessels provides a means to revise the pathologists' line of demarcation separating grade III (GIII) from grade IV (GIV) parts

    Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: Analysis of single-agent and combined modality approaches

    Get PDF
    Surgical resection followed by radiotherapy and temozolomide in newly diagnosed glioblastoma can prolong survival, but it is not curative. For patients with disease progression after frontline therapy, there is no standard of care, although further surgery, chemotherapy, and radiotherapy may be used. Antiangiogenic therapies may be appropriate for treating glioblastomas because angiogenesis is critical to tumor growth. In a large, noncomparative phase II trial, bevacizumab was evaluated alone and with irinotecan in patients with recurrent glioblastoma; combination treatment was associated with an estimated 6-month progression-free survival (PFS) rate of 50.3%, a median overall survival of 8.9 months, and a response rate of 37.8%. Single-agent bevacizumab also exceeded the predetermined threshold of activity for salvage chemotherapy (6-month PFS rate, 15%), achieving a 6-month PFS rate of 42.6% (p < 0.0001). On the basis of these results and those from another phase II trial, the US Food and Drug Administration granted accelerated approval of single-agent bevacizumab for the treatment of glioblastoma that has progressed following prior therapy. Potential antiangiogenic agents-such as cilengitide and XL184-also show evidence of single-agent activity in recurrent glioblastoma. Moreover, the use of antiangiogenic agents with radiation at disease progression may improve the therapeutic ratio of single-modality approaches. Overall, these agents appear to be well tolerated, with adverse event profiles similar to those reported in studies of other solid tumors. Further research is needed to determine the role of antiangiogenic therapy in frontline treatment and to identify the optimal schedule and partnering agents for use in combination therapy

    PI3Kinase signaling in glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most common primary tumor of the CNS in the adult. It is characterized by exponential growth and diffuse invasiveness. Among many different genetic alterations in GBM, e.g., mutations of PTEN, EGFR, p16/p19 and p53 and their impact on aberrant signaling have been thoroughly characterized. A major barrier to develop a common therapeutic strategy is founded on the fact that each tumor has its individual genetic fingerprint. Nonetheless, the PI3K pathway may represent a common therapeutic target to most GBM due to its central position in the signaling cascade affecting proliferation, apoptosis and migration. The read-out of blocking PI3K alone or in combination with other cancer pathways should mainly focus, besides the cytostatic effect, on cell death induction since sublethal damage may induce selection of more malignant clones. Targeting more than one pathway instead of a single agent approach may be more promising to kill GBM cells

    Temozolomide and Resistant Glioma Cells

    No full text
    corecore