144 research outputs found
Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis
Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. © 2009 Piuri et al
Multiple Cellular Responses to Serotonin Contribute to Epithelial Homeostasis
Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonin's roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers)
Annual Risk of Tuberculous Infection Using Different Methods in Communities with a High Prevalence of TB and HIV in Zambia and South Africa
BACKGROUND: The annual risk of tuberculous infection (ARTI) is a key epidemiological indicator of the extent of transmission in a community. Several methods have been suggested to estimate the prevalence of tuberculous infection using tuberculin skin test data. This paper explores the implications of using different methods to estimate prevalence of infection and ARTI. The effect of BCG vaccination on these estimates is also investigated. METHODOLOGY/PRINCIPAL FINDINGS: Tuberculin surveys among school children in 16 communities in Zambia and 8 in South Africa (SA) were performed in 2005, as part of baseline data collection and for randomisation purposes of the ZAMSTAR study. Infection prevalence and ARTI estimates were calculated using five methods: different cut-offs with or without adjustments for sensitivity, the mirror method, and mixture analysis. A total of 49,835 children were registered for the surveys, of which 25,048 (50%) had skin tests done and 22,563 (90%) of those tested were read. Infection prevalence was higher in the combined SA than Zambian communities. The mirror method resulted in the least difference of 7.8%, whereas that estimated by the cut-off methods varied from 12.2% to 17.3%. The ARTI in the Zambian and SA communities was between 0.8% and 2.8% and 2.5% and 4.2% respectively, depending on the method used. In the SA communities, the ARTI was higher among the younger children. BCG vaccination had little effect on these estimates. CONCLUSIONS/SIGNIFICANCE: ARTI estimates are dependent on the calculation method used. All methods agreed that there were substantial differences in infection prevalence across the communities, with higher rates in SA. Although TB notification rates have increased over the past decades, the difference in cumulative exposure between younger and older children is less dramatic and a rise in risk of infection in parallel with the estimated incidence of active tuberculosis cannot be excluded
IP-10 response to RD1 antigens might be a useful biomarker for monitoring tuberculosis therapy
Background
There is an urgent need of prognosis markers for tuberculosis (TB) to improve treatment strategies. The results of several studies show that the Interferon (IFN)-γ-specific response to the TB antigens of the QuantiFERON TB Gold (QFT-IT antigens) decreases after successful TB therapy. The objective of this study was to evaluate whether there are factors other than IFN-γ [such as IFN-γ inducible protein (IP)-10 which has also been associated with TB] in response to QFT-IT antigens that can be used as biomarkers for monitoring TB treatment.
Methods
In this exploratory study we assessed the changes in IP-10 secretion in response to QFT-IT antigens and RD1 peptides selected by computational analysis in 17 patients with active TB at the time of diagnosis and after 6 months of treatment. The IFN-γ response to QFT-IT antigens and RD1 selected peptides was evaluated as a control. A non-parametric Wilcoxon signed-rank test for paired comparisons was used to compare the continuous variables at the time of diagnosis and at therapy completion. A Chi-square test was used to compare proportions.
Results
We did not observe significant IP-10 changes in whole blood from either NIL or QFT-IT antigen tubes, after 1-day stimulation, between baseline and therapy completion (p = 0.08 and p = 0.7 respectively). Conversely, the level of IP-10 release to RD1 selected peptides was significantly different (p = 0.006). Similar results were obtained when we detected the IFN-γ in response to the QFT-IT antigens (p = 0.06) and RD1 selected peptides (p = 0.0003). The proportion of the IP-10 responders to the QFT-IT antigens did not significantly change between baseline and therapy completion (p = 0.6), whereas it significantly changed in response to RD1 selected peptides (p = 0.002). The proportion of IFN-γ responders between baseline and therapy completion was not significant for QFT-IT antigens (p = 0.2), whereas it was significant for the RD1 selected peptides (p = 0.002), confirming previous observations.
Conclusions
Our preliminary study provides an interesting hypothesis: IP-10 response to RD1 selected peptides (similar to IFN-γ) might be a useful biomarker for monitoring therapy efficacy in patients with active TB. However, further studies in larger cohorts are needed to confirm the consistency of these study results
Voltage Gated Calcium Channels Negatively Regulate Protective Immunity to Mycobacterium tuberculosis
Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC) regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs) either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity
Long-Term Mortality in Patients with Tuberculous Meningitis: A Danish Nationwide Cohort Study
Background: With high short-term mortality and substantial excess morbidity among survivors, tuberculous meningitis (TBM) is the most severe manifestation of extra-pulmonary tuberculosis (TB). The objective of this study was to assess the long-term mortality and causes of death in a TBM patient population compared to the background population. Methods: A nationwide cohort study was conducted enrolling patients notified with TBM in Denmark from 1972–2008 and alive one year after TBM diagnosis. Data was extracted from national registries. From the background population we identified a control cohort of individuals matched on gender and date of birth. Kaplan-Meier survival curves and Cox regression analysis were used to estimate mortality rate ratios (MRR) and analyse causes of death. Findings: A total of 55 TBM patients and 550 individuals from the background population were included in the study. Eighteen patients (32.7%) and 107 population controls (19.5%) died during the observation period. The overall MRR was 1.79 (95%CI: 1.09–2.95) for TBM patients compared to the population control cohort. TBM patients in the age group 31–60 years at time of diagnosis had the highest relative risk of death (MRR 2.68; 95%CI 1.34–5.34). The TBM patients had a higher risk of death due to infectious disease, but not from other causes of death. Conclusion: Adult TBM patients have an almost two-fold increased long-term mortality and the excess mortality stems fro
Performance of QuantiFERON-TB Gold In-Tube (QFTGIT) for the diagnosis of Mycobacterium tuberculosis (Mtb) infection in Afar Pastoralists, Ethiopia
<p>Abstract</p> <p>Background</p> <p>Currently, T-cell based gamma interferon (IFNγ) release assays (IGRAs) are acknowledged as the best methods available for the screening of latent tuberculosis infection (LTBI) and also as aid for the diagnosis of active tuberculosis (TB). To our information, the performance of these diagnostic tests has not been evaluated in Ethiopia. Therefore, the intent of this study was to evaluate the performance of QuantiFERON-TB Gold In-Tube (QFTGIT) in patients clinically suspected of active pulmonary TB (PTB) as well as in healthy subjects prior to its utilization for the epidemiological study of active TB and LTBI in Afar pastoralists.</p> <p>Methods</p> <p>The sensitivity of QFTGIT was evaluated in 140 subjects who were clinically suspected of PTB using the cut-off value recommended by the manufacturer (≥ 0.35 IU/ml) and disease-specific cut-off value. Sputum culture result was used as a gold standard. The specificity of the test was evaluated both in patients and in 55 tuberculin skin test (TST) negative healthy subjects.</p> <p>Results</p> <p>Out of the 140 study participants, 37 (26.4%) were positive for active PTB by culture. Out of the 37 subjects who had positive results by culture, 6 individuals were HIV-seropositive. Out of the 103 subjects who were negative by culture, 6 subjects had indeterminate results and 21 were HIV-seropositive. The performance of the test was assessed using data from 107 (31 culture positive and 76 culture negative) individuals who were clinically suspected of PTB and HIV-seronegatives. Using the manufacturer recommended cut-off value, the sensitivity of the test was 64.5% (20/31), while its specificity was 36.8% (28/76). The sensitivity of the test was increased to 77.4%, while the specificity was reduced to 23.7% using a cut-off value ≥ 0.1 IU/ml of IFNγ as disease-specific cut-off value. In TST negative healthy subjects, the specificity of the test was 58.2%.</p> <p>Conclusion</p> <p>Our findings revealed a low sensitivity of QFTGIT in the diagnosis of <it>Mycobacterium tuberculosis (Mtb) </it>infection in the present study area using the cut-off value recommended by the manufacturer. Nevertheless, the sensitivity increased from 64.5% to 77.4% by lowering the cut-off value recommended by the manufacturer to ≥ 0.1 IU/ml of IFNγ level. Hence, it is of practical importance to evaluate the performance of QFTGIT in population under different settings prior to its application either for the diagnosis of active TB or LTBI.</p
Analyzing the regulation of metabolic pathways in human breast cancer
<p>Abstract</p> <p>Background</p> <p>Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer.</p> <p>Methods</p> <p>For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors.</p> <p>Results</p> <p>Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway.</p> <p>Conclusion</p> <p>We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment.</p
Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis?
<p>Abstract</p> <p>Background</p> <p>β-cells are extremely rich in zinc and zinc homeostasis is regulated by zinc transporter proteins. β-cells are sensitive to cytokines, interleukin-1β (IL-1β) has been associated with β-cell dysfunction and -death in both type 1 and type 2 diabetes. This study explores the regulation of zinc transporters following cytokine exposure.</p> <p>Methods</p> <p>The effects of cytokines IL-1β, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) on zinc transporter gene expression were measured in INS-1-cells and rat pancreatic islets. Being the more sensitive transporter, we further explored ZnT8 (Slc30A8): the effect of ZnT8 over expression on cytokine induced apoptosis was investigated as well as expression of the insulin gene and two apoptosis associated genes, BAX and BCL2.</p> <p>Results</p> <p>Our results showed a dynamic response of genes responsible for β-cell zinc homeostasis to cytokines: IL-1β down regulated a number of zinc-transporters, most strikingly ZnT8 in both islets and INS-1 cells. The effect was even more pronounced when mixing the cytokines. TNF-α had little effect on zinc transporter expression. IFN-γ down regulated a number of zinc transporters. Insulin expression was down regulated by all cytokines. ZnT8 over expressing cells were more sensitive to IL-1β induced apoptosis whereas no differences were observed with IFN-γ, TNF-α, or a mixture of cytokines.</p> <p>Conclusion</p> <p>The zinc transporting system in β-cells is influenced by the exposure to cytokines. Particularly ZnT8, which has been associated with the development of diabetes, seems to be cytokine sensitive.</p
- …