10 research outputs found

    Foveated image processing for faster object detection and recognition in embedded systems using deep convolutional neural networks

    Get PDF
    Object detection and recognition algorithms using deep convolutional neural networks (CNNs) tend to be computationally intensive to implement. This presents a particular challenge for embedded systems, such as mobile robots, where the computational resources tend to be far less than for workstations. As an alternative to standard, uniformly sampled images, we propose the use of foveated image sampling here to reduce the size of images, which are faster to process in a CNN due to the reduced number of convolution operations. We evaluate object detection and recognition on the Microsoft COCO database, using foveated image sampling at different image sizes, ranging from 416×416 to 96×96 pixels, on an embedded GPU – an NVIDIA Jetson TX2 with 256 CUDA cores. The results show that it is possible to achieve a 4× speed-up in frame rates, from 3.59 FPS to 15.24 FPS, using 416×416 and 128×128 pixel images respectively. For foveated sampling, this image size reduction led to just a small decrease in recall performance in the foveal region, to 92.0% of the baseline performance with full-sized images, compared to a significant decrease to 50.1% of baseline recall performance in uniformly sampled images, demonstrating the advantage of foveated sampling

    HoughNet: Integrating Near and Long-Range Evidence for Bottom-Up Object Detection

    Get PDF
    © 2020, Springer Nature Switzerland AG.This paper presents HoughNet, a one-stage, anchor-free, voting-based, bottom-up object detection method. Inspired by the Generalized Hough Transform, HoughNet determines the presence of an object at a certain location by the sum of the votes cast on that location. Votes are collected from both near and long-distance locations based on a log-polar vote field. Thanks to this voting mechanism, HoughNet is able to integrate both near and long-range, class-conditional evidence for visual recognition, thereby generalizing and enhancing current object detection methodology, which typically relies on only local evidence. On the COCO dataset, HoughNet’s best model achieves 46.4 AP (and 65.1 AP50), performing on par with the state-of-the-art in bottom-up object detection and outperforming most major one-stage and two-stage methods. We further validate the effectiveness of our proposal in another task, namely, “labels to photo” image generation by integrating the voting module of HoughNet to two different GAN models and showing that the accuracy is significantly improved in both cases. Code is available at https://github.com/nerminsamet/houghnet

    Activation of heterotrimeric G-proteins independent of a G-protein coupled receptor and the implications for signal processing

    No full text
    corecore