5 research outputs found

    Global Changes in Staphylococcus aureus Gene Expression in Human Blood

    Get PDF
    Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC), those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence

    Metals and kidney markers in adult offspring of endemic nephropathy patients and controls: a two-year follow-up study

    Get PDF
    Abstract Background The etiology of Balkan Endemic Nephropathy, (BEN), a tubulointerstitial kidney disease, is unknown. Although this disease is endemic in rural areas of Bosnia, Bulgaria, Croatia, Romania, and Serbia, similar manifestations are reported to occur in other regions, for instance Tunisia and Sri Lanka. A number of explanations have been stated including lignites, aristolochic acid, ochratoxin A, metals, and metalloids. Etiologic claims are often based on one or a few studies without sound scientific evidence. In this systematic study, we tested whether exposures to metals (cadmium and lead) and metalloids (arsenic and selenium) are related to Balkan Endemic Nephropathy. Methods In 2003/04 we recruited 102 adults whose parents had BEN and who resided in one of three communities (Vratza, Bistretz, or Beli Izvor, Bulgaria). A control group comprised of 99 adults having non-BEN hospitalized parents was enrolled in the study during the same time. We conducted face-to-face interviews, ultrasound kidney measurements, and determined kidney function in two consecutive investigations (2003/04 and 2004/05). Metals and metalloids were measured in urine and blood samples. To assess the agreement between these consecutive measurements, we calculated intraclass correlation coefficients. Repeated measurement data were analyzed using mixed models. Results We found that cadmium and arsenic were associated with neither kidney size nor function. Lead had a significant but negligible effect on creatinine clearance. Selenium showed a weak but significant negative association with two of the four kidney parameters, namely creatinine clearance and β2-microglobulin. It was positively related to kidney length. These associations were not restricted to the offspring of BEN patients. Adding credence to these findings are reports showing comparable kidney effects in animals exposed to selenium. Conclusion The findings of this 2-year follow-up study indicate that metals and metalloids do not play a role in the etiology of Balkan Endemic Nephropathy. Against the assumption in the literature, selenium was not protective but a risk factor. Since comparable associations were observed in animals, future studies are needed to explore whether selenium may have adverse renal effects in humans.</p

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed
    corecore