25 research outputs found

    Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study

    Get PDF
    BACKGROUND: Lateral Patella dislocations are common injuries seen in the active and young adult populations. Our study focus was to evaluate medial patellofemoral ligament (MPFL) injury patterns and associated knee pathology using Magnetic Resonance Imaging studies. METHODS: MRI studies taken at one imaging site between January, 2007 to January, 2008 with the final diagnosis of patella dislocation were screened for this study. Of the 324 cases that were found, 195 patients with lateral patellar dislocation traumatic enough to cause bone bruises on the lateral femoral trochlea and the medial facet of the patella were selected for this study. The MRI images were reviewed by three independent observers for location and type of MPFL injury, osteochondral defects, loose bodies, MCL and meniscus tears. The data was analyzed as a single cohort and by gender. RESULTS: This study consisted of 127 males and 68 females; mean age of 23 yrs. Tear of the MPFL at the patellar attachment occurred in 93/195 knees (47%), at the femoral attachment in 50/195 knees (26%), and at both the femoral and patella attachment sites in 26/195 knees (13%). Attenuation of the MPFL without rupture occurred in 26/195 knees (13%). Associated findings included loose bodies in 23/195 (13%), meniscus tears 41/195 (21%), patella avulsion/fracture in 14/195 (7%), medial collateral ligament sprains/tears in 37/195 (19%) and osteochondral lesions in 96/195 knees (49%). Statistical analysis showed females had significantly more associated meniscus tears than the males (27% vs. 17%, p = 0.04). Although not statistically significant, osteochondral lesions were seen more in male patients with acute patella dislocation (52% vs. 42%, p = 0.08). CONCLUSION: Patients who present with lateral patella dislocation with the classic bone bruise pattern seen on MRI will likely rupture the MPFL at the patellar side. Females are more likely to have an associated meniscal tear than males; however, more males have underlying osteochondral lesions. Given the high percentage of associated pathology, we recommend a MRI of the knee in all patients who present with acute patella dislocation

    Magnetic resonance imaging of the erector spinae muscles in Duchenne muscular dystrophy: implication for scoliotic deformities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Duchenne muscular dystrophy (DMD), the muscular degeneration often leads to the development of scoliosis. Our objective was to investigate how anatomical changes in back muscles can lead to scoliosis. Muscular volume and the level of fat infiltration in those muscles were thus evaluated, in non-scoliotic, pre-scoliotic and scoliotic patients. The overlying skin thickness over the apex level of scoliotic deformations was also measured to facilitate the interpretation of electromyographic signals when recorded on the skin surface.</p> <p>Methods</p> <p>In 8 DMD patients and two healthy controls with no known muscular deficiencies, magnetic resonance imaging (MRI) was used to measure continuously at 3 mm intervals the distribution of the erector spinae (ES) muscle in the T8-L4 region as well as fat infiltration in the muscle and overlying skin thickness: four patients were non-scoliotic (NS), two were pre-scoliotic (PS, Cobb angle < 15°) and two were scoliotic (S, Cobb angle ≥ 15°). For each subject, 63 images 3 mm thick of the ES muscle were obtained in the T8-L4 region on both sides of the spine. The pixel dimension was 0.39 × 0.39 mm. With a commercial software, on each 12 bits image, the ES contour on the left and on the right sides of the spine were manually determined as well as those of its constituents i.e., the iliocostalis (IL), the longissimus (LO) and the spinalis (SP) muscles. Following this segmentation, the surfaces within the contours were determined, the muscles volume were obtained, the amount of fat infiltration inside each muscle was evaluated and the overlying skin thickness measured.</p> <p>Findings</p> <p>The volume of the ES muscle of our S and PS patients was found smaller on the convex side relative to the concave one by 5.3 ± 0.7% and 2.8 ± 0.2% respectively. For the 4 NS patients, the volume difference of this muscle between right and left sides was 2.1 ± 1.5% and for the 2 controls, it was 1.4 ± 1.2%. Fat infiltration for the S and the PS patients was larger on the convex side than on the concave one (4.4 ± 1.6% and 4.5 ± 0.7% respectively) and the difference was more important near the apex. Infiltration was more important in the lateral IL muscle than in the medial SP and it was always larger near L2 than at any other spinal level. Fat infiltration was much more important in the ES for the DMD patients (49.9% ± 1.6%) than for the two controls (2.6 ± 0.8%). As for the overlying skin thickness measured near the deformity of the patients, it was larger on the concave than on the convex side: 14.8 ± 6.1 vs 13.5 ± 5.7 mm for the S and 10.3 ± 6.3 vs 9.8 ± 5.6 mm for the PS.</p> <p>Interpretation</p> <p>In DMD patients, our results indicate that a larger replacement of muscles fibers by fat infiltration on one side of the spine is a factor that can lead to the development of scoliosis. Efforts to slow such an infiltration on the most affected side of the spine could thus be beneficial to those patients by delaying the apparition of the scoliotic deformation. In addition to anatomical considerations, results obtained from the same patients but in experiments dealing with electromyography recordings, point to differences in the muscular contraction mechanisms and/or of the neural input to back muscles. This is similar to the adolescent idiopathic scoliosis (AIS) where a role of the nervous system in the development of the deformation has also been suggested.</p

    Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study

    Get PDF
    BACKGROUND: It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. METHODS: L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. RESULTS: No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. CONCLUSION: The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower level of the spine with these EMG parameters

    Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.

    Get PDF
    PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV

    The Anatomy and Isometry of Themedial Patellofemoral Ligament

    No full text
    corecore