219 research outputs found
Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives
Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts, chondroblasts, adipocytes, and even myoblasts. Most studies have focused on finding MSCs in different parts of the body for medical treatment. Every joint structure, including bone, joint fat, articular cartilage, and synovium, potentially contains resident MSCs. Recently, a progenitor cell population has been found in synovial fluid and showed similarities with both bone marrow and synovial membrane MSCs. Synovial fluid MSCs have been studied in healthy persons and osteoarthritic patients in order to explore its potential for treatment of some orthopedic disorders. Here, we briefly review the current knowledge on synovial fluid MSCs, their origin, relation to some orthopedic diseases, and future applications
MicroRNAs, Hypoxia and the Stem-Like State as Contributors to Cancer Aggressiveness
MicroRNAs (miRNAs) are small non-coding RNA molecules that play key regulatory roles in cancer acting as both oncogenes and tumor suppressors. Due to their potential roles in improving cancer prognostic, predictive, diagnostic and therapeutic approaches, they have become an area of intense research focus in recent years. Several studies have demonstrated an altered expression of several miRNAs under hypoxic condition and even shown that the hypoxic microenvironment drives the selection of a more aggressive cancer cell population through cellular adaptations referred as the cancer stem-like cell. These minor fractions of cells are characterized by their self-renewal abilities and their ability to maintain the tumor mass, suggesting their crucial roles in cancer development. This review aims to highlight the interconnected role between miRNAs, hypoxia and the stem-like state in contributing to the cancer aggressiveness as opposed to their independent contributions, and it is based in four aggressive tumors, namely glioblastoma, cervical, prostate, and breast cancers
Evidence of Aquaporin 4 Regulation by Thyroid Hormone During Mouse Brain Development and in Cultured Human Glioblastoma Multiforme Cells
Accumulating evidence indicates that thyroid function and the thyroid hormones L-thyroxine (T4) and L-triiodothyronine (T3) are important factors contributing to the improvement of various pathologies of the central nervous system, including stroke, and various types of cancer, including glioblastoma multiforme (GBM). Low levels of T3 are correlated with the poorest outcome of post-stroke brain function, as well as an increased migration and proliferation of GBM tumor cells. Thyroid hormones are known to stimulate maturation and brain development. Aquaporin 4 (AQP4) is a key factor mediating the cell swelling and edema that occurs during ischemic stroke, and plays a potential role in the migration and proliferation of GBM tumor cells. In this study, as a possible therapeutic target for GBM, we investigated the potential role of T3 in the expression of AQP4 during different stages of mouse brain development. Pregnant mice at gestational day 18, or young animals at postnatal days 27 and 57, received injection of T3 (1 μg/g) or NaOH (0.02 N vehicle). The brains of mice sacrificed on postnatal days 0, 30, and 60 were perfused with 4% paraformaldehyde and sections were prepared for immunohistochemistry of AQP4. AQP4 immunofluorescence was measured in the mouse brains and human GBM cell lines. We found that distribution of AQP4 was localized in astrocytes of the periventricular, subpial, and cerebral parenchyma. Newborn mice treated with T3 showed a significant decrease in AQP4 immunoreactivity followed by an increased expression at P30 and a subsequent stabilization of aquaporin levels in adulthood. All GBM cell lines examined exhibited significantly lower AQP4 expression than cultured astrocytes. T3 treatment significantly downregulated AQP4 in GBM-95 cells but did not influence the rate of GBM cell migration measured 24 h after treatment initiation. Collectively, our results showed that AQP4 expression is developmentally regulated by T3 in astrocytes of the cerebral cortex of newborn and young mice, and is discretely downregulated in GBM cells. These findings indicate that higher concentrations of T3 thyroid hormone would be more suitable for reducing AQP4 in GBM tumorigenic cells, thereby resulting in better outcomes regarding the reduction of brain tumor cell migration and proliferation
Short-Term Functional and Morphological Changes in the Primary Cultures of Trigeminal Ganglion Cells
Several studies have proved that glial cells, as well as neurons, play a role in pain pathophysiology. Most of these studies have focused on the contribution of central glial cells (e.g., microglia and astrocytes) to neuropathic pain. Likewise, some works have suggested that peripheral glial cells, particularly satellite glial cells (SGCs), and the crosstalk between these cells and the sensory neurons located in the peripheral ganglia, play a role in the phenomenon that leads to pain. Nonetheless, the study of SGCs may be challenging, as the validity of studying those cells in vitro is still controversial. In this study, a research protocol was developed to examine the potential use of primary mixed neuronal–glia cell cultures obtained from the trigeminal ganglion cells (TGCs) of neonate mice (P10–P12). Primary cultures were established and analyzed at 4 h, 24 h, and 48 h. To this purpose, phase contrast microscopy, immunocytochemistry with antibodies against anti-βIII-tubulin and Sk3, scanning electron microscopy, and time-lapse photography were used. The results indicated the presence of morphological changes in the cultured SGCs obtained from the TGCs. The SGCs exhibited a close relationship with neurons. They presented a round shape in the first 4 h, and a more fusiform shape at 24 h and 48 h of culture. On the other hand, neurons changed from a round shape to a more ramified shape from 4 h to 48 h. Intriguingly, the expression of SK3, a marker of the SGCs, was high in all samples at 4 h, with some cells double-staining for SK3 and βIII-tubulin. The expression of SK3 decreased at 24 h and increased again at 48 h in vitro. These results confirm the high plasticity that the SGCs may acquire in vitro. In this scenario, the authors hypothesize that, at 4 h, a group of the analyzed cells remained undifferentiated and, therefore, were double-stained for SK3 and βIII-tubulin. After 24 h, these cells started to differentiate into SCGs, which was clearer at 48 h in the culture. Mixed neuronal–glial TGC cultures might be implemented as a platform to study the plasticity and crosstalk between primary sensory neurons and SGCs, as well as its implications in the development of chronic orofacial pain
Microglia/Astrocytes–Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors
In recent years, the functions of glial cells, namely, astrocytes and microglia, have gained prominence in several diseases of the central nervous system, especially in glioblastoma (GB), the most malignant primary brain tumor that leads to poor clinical outcomes. Studies showed that microglial cells or astrocytes play a critical role in promoting GB growth. Based on the recent findings, the complex network of the interaction between microglial/astrocytes cells and GB may constitute a potential therapeutic target to overcome tumor malignancy. In the present review, we summarize the most important mechanisms and functions of the molecular factors involved in the microglia or astrocytes–GB interactions, which is particularly the alterations that occur in the cell’s extracellular matrix and the cytoskeleton. We overview the cytokines, chemokines, neurotrophic, morphogenic, metabolic factors, and non-coding RNAs actions crucial to these interactions. We have also discussed the most recent studies regarding the mechanisms of transportation and communication between microglial/astrocytes – GB cells, namely through the ABC transporters or by extracellular vesicles. Lastly, we highlight the therapeutic challenges and improvements regarding the crosstalk between these glial cells and GB
The Enteric Glial Network Acts in the Maintenance of Intestinal Homeostasis and in Intestinal Disorders
The enteric nervous system (ENS), also known as second brain, innervates our gastrointestinal tract controlling its functions, such as motility, fluid secretion, nutrient absorption, and even involvement in the control of immunity and inflammatory processes. In the gut, the gliocytes are known as enteric glial cells (EGCs). Enteric glial cells form a network that permeates the entire gut. Enteric glia express the cell surface hemichannel of connexin-43 (Cx43) necessary for the propagation of Ca2 + responses, necessary to maintain their functions. In this chapter, besides the development of ENS and its glial cells and the similarities with the astrocytes in the central nervous system, we approached the important role of the glial network in the control of gut homeostasis, in the interaction with the immune system, and its participation in pathological conditions. EGCs are even capable of replacing lost neurons. Thus the enteric glia is a multifunctional cell, which through its multiple interactions maintains the integrity of the ENS allowing it to be resistant to the different and constant aggressions suffered by the digestive system
Dopamine affects the stability, hydration, and packing of protofibrils and fibrils of the wild type and variants of alpha-synuclein
Parkinson's disease (PD) is characterized by the presence of cytoplasmic inclusions composed of alpha-synuclein (alpha-syn) in dopaminergic neurons. This suggests a pivotal role of dopamine (DA) on PD development. Here, we show that DA modulates differently the stability of protofibrils (PF) and fibrils (F) composed of wild type or variants of alpha-syn (A30P and A53T) as probed by high hydrostatic pressure (HHP). While in the absence of DA, all alpha-syn PF exhibited identical stability, in its presence, the variant-composed PF acquired a greater stability (DAPFwt < DAPFA30P = DAPFA53T), implying that they would last longer, which could shed light onto why these mutations are so aggressive. When alpha-syn was incubated for long times (18 days) in the presence of DA, we observed the formation of F by electronic microscopy, suggesting that the PF trapped in the presence of DA in short times can evolve into F. The stability of F was also altered by DA. DAFwt was more labile than Fwt, indicating that the former would be more susceptible to breakage. PFA30P and DAPFA30P, when added to mesencephalic and cortical neurons in culture, decreased the number and length of neurites and increased the number of apoptotic cells. Surprisingly, these toxic effects of PFA30P and DAPFA30P were practically abolished with HHP treatment, which was able to break the PF into smaller aggregates, as seen by atomic force microscopy. These results suggest that strategies aimed at breaking and/or clearing these aggregates is promising in alleviating the symptoms of PD
Inhibition of Alzheimer's disease beta-amyloid aggregation, neurotoxicity and in vivo deposition
- …
