24 research outputs found

    Garnet entrainment in migmatites and the origin of (some) S-type granites.

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Instabilities development in partially molten rocks

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Controls of upwelling and emplacement: the response of the envelope: balloons, pistons and reality

    No full text

    Dextral transpression and late Eocene magmatism in the trans-Himalayan Ladakh Batholith (North India): implications for tectono-magmatic evolution of the Indo-Eurasian collisional arc

    No full text
    The trans-Himalayan Ladakh batholith is a result of arc magmatism caused by the northward subduction of the Tethyan oceanic lithosphere below the edge of the Eurasian plate. The batholith dominantly consists of calc-alkaline I-type granitoids which are ferromagnetic in nature with the presence of magnetite as the principal carrier of magnetic susceptibility. The mesoscopic and magnetic fabric are concordant and generally vary from WNW–ESE to ENE–WSW for different intrusions of ferromagnetic granites in different parts of the batholith. Strike of magnetic fabric is roughly parallel with the regional trend of the Ladakh batholith in the present study area and is orthogonal to the direction of India-Eurasia collision. In Khardungla and Changla section, the magnetic fabric is distributed in a sigmoidal manner. It is inferred that this sigmoidal pattern is caused by shearing due to transpression induced by oblique convergence between the two plates. U–Pb zircon geochronology of a rhyolite from the southern parts of the batholith gives a crystallization age of 71.7 ± 0.6 Ma, coeval with ~68 Ma magmatism in the northern parts of the batholith. The central part of the batholith is characterized by S-type two-mica granites, which gives much younger age of magmatism at 35.5 ± 0.5 Ma. The magnetic fabric of these two-mica granites is at a high angle to the regional trend of the batholith. It is proposed that these two-mica granites were emplaced well after the cessation of subduction and arc magmatism, along fractures that developed perpendicular to the regional strike of the batholith due to shearing.Koushik Sen, Alan S. Collin

    Granitic magma formation, transport and emplacement in the Earth's Crust

    No full text
    The origin of granites was once a question solely for petrologists and geochemists. But in recent years a consensus has emerged that recognizes the essential role of deformation in the segregation, transport and emplacement of silica-rich melts in the continental crust. Accepted petrological models are being questioned, either because they require unrealistic rheological behaviours of rocks and magmas, or because they do not satisfactorily explain the available structural or geophysical data. Provided flow is continuous, mechanical considerations suggest that--far from being geologically sluggish--granite magmatism is a rapid, dynamic process operating at timescales of < or = 100,000 years, irrespective of tectonic setting
    corecore