20,903 research outputs found
On the integrability of halo dipoles in gravity
We stress that halo dipole components are nontrivial in core-halo systems in
both Newton's gravity and General Relativity. To this end, we extend a recent
exact relativistic model to include also a halo dipole component. Next, we
consider orbits evolving in the inner vacuum between a monopolar core and a
pure halo dipole and find that, while the Newtonian dynamics is integrable, its
relativistic counterpart is chaotic. This shows that chaoticity due only to
halo dipoles is an intrinsic relativistic gravitational effect.Comment: 9 pages, REVTEX, two postscript figures include
Chaos in Periodically Perturbed Monopole + Quadrupole Like Potentials
The motion of a particle that suffers the influence of simple inner (outer)
periodic perturbations when it evolves around a center of attraction modeled by
an inverse square law plus a quadrupole-like term is studied. The equations of
motion are used to reduce the Melnikov method to the study of simple graphics.Comment: 12 pages, 6 Postscript figure
Growth of ZnO nanostructures on Si by means of plasma immersion ion implantation and deposition
Crystalline zinc oxide (ZnO) nanostructures have been grown on Si substrates by means of Plasma Based Ion Implantation and Deposition (PIII&D) at temperature of about 300 0C and in the presence of an argon glow discharge. In the process a crucible filled with small pieces of metallic zinc plays the role of the anode of the discharge itself, being polarized by positive DC voltage of about 400V. Electrons produced by thermionic emission by an oxide cathode (Ba, Sr, Ca)O impact this crucible, causing its heating and vaporization of Zn. Partial ionization of Zn atoms takes place due to collisions with plasma particles. High negative voltage pulses (7 kv/40μs/250Hz) applied to the sample holder cause the implantation of metallic zinc into Si surface, while Zn deposition happens between pulses. After annealing at 700 0C, strong UV and various visible photoluminescence bands are observed at room temperature, as well as the presence of ZnO nanoparticles. The coated surface was characterized in detail using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. XRD indicated the presence of only ZnO peaks after annealing. The composition analysis by EDS revealed distinct Zn/O stoichiometry relation depending on the conditions of the process. AFM images showed the formation of columns in the nanoscale range. Topography viewed by SEM showed the formation of structures similar to cactus with nanothorns. Depth analysis performed by XPS indicated an increase of concentration of metallic Zn with increasing depth and the exclusive presence of ZnO for outer regions. PIII&D allowed to growing nanostructures of ZnO on Si without the need of a buffer layer
Stabilized jellium model and structural relaxation effects on the fragmentation energies of ionized silver clusters
Using the stabilized jellium model in two schemes of `relaxed' and `rigid',
we have calculated the dissociation energies and the fission barrier heights
for the binary fragmentations of singly-ionized and doubly-ionized Ag clusters.
In the calculations, we have assumed spherical geometries for the clusters.
Comparison of the fragmentation energies in the two schemes show differences
which are significant in some cases. This result reveals the advantages of the
relaxed SJM over the rigid SJM in dynamical processes such as fragmentation.
Comparing the relaxed SJM results and axperimental data on fragmentation
energies, it is possible to predict the sizes of the clusters just before their
fragmentations.Comment: 9 pages, 12 JPG figure
Improved Constraints on Cosmic Microwave Background Secondary Anisotropies from the Complete 2008 South Pole Telescope Data
We report measurements of the cosmic microwave background (CMB) power spectrum from the complete 2008 South Pole Telescope (SPT) data set. We analyze twice as much data as the first SPT power spectrum analysis, using an improved cosmological parameter estimator which fits multi-frequency models to the SPT 150 and 220 GHz bandpowers. We find an excellent fit to the measured bandpowers with a model that includes lensed primary CMB anisotropy, secondary thermal (tSZ) and kinetic (kSZ) Sunyaev-Zel'dovich anisotropies, unclustered synchrotron point sources, and clustered dusty point sources. In addition to measuring the power spectrum of dusty galaxies at high signal-to-noise, the data primarily constrain a linear combination of the kSZ and tSZ anisotropy contributions at 150 GHz and ℓ = 3000: D^(tSZ) ^(3000) + 0.5 D_(kSZ)^(3000) = 4.5 ± 1.0 μK^2. The 95% confidence upper limits on secondary anisotropy power are D ^(tSZ)_(3000) < 5.3 μK^2 and D^(kSZ)_(3000) < 6.5 μK^2. We also consider the potential correlation of dusty and tSZ sources and find it incapable of relaxing the tSZ upper limit. These results increase the significance of the lower than expected tSZ amplitude previously determined from SPT power spectrum measurements. We find that models including non-thermal pressure support in groups and clusters predict tSZ power in better agreement with the SPT data. Combining the tSZ power measurement with primary CMB data halves the statistical uncertainty on σ8. However, the preferred value of σ8 varies significantly between tSZ models. Improved constraints on cosmological parameters from tSZ power spectrum measurements require continued progress in the modeling of the tSZ power
A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope
We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 deg^2 of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ℓ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We find that the SPT and WMAP data are consistent with each other and, when combined, are well fit by a spatially flat, ΛCDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar fluctuations is n_s = 0.9663 ± 0.0112. We detect, at ~5σ significance, the effect of gravitational lensing on the CMB power spectrum, and find its amplitude to be consistent with the ΛCDM cosmological model. We explore a number of extensions beyond the ΛCDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensor-to-scalar ratio to be r < 0.21 (95% CL) and constrain the running of the scalar spectral index to be dn_s /dln k = –0.024 ± 0.013. We strongly detect the effects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7σ, while a model without neutrinos is rejected at 7.5σ. The primordial helium abundance is measured to be Y_p = 0.296 ± 0.030, and the effective number of relativistic species is measured to be N_eff = 3.85 ± 0.62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0.9668 ± 0.0093, r < 0.17 (95% CL), and N_eff = 3.86 ± 0.42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high effective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters
- …