11,482 research outputs found

    Information entropy of classical versus explosive percolation

    Full text link
    We study the Shannon entropy of the cluster size distribution in classical as well as explosive percolation, in order to estimate the uncertainty in the sizes of randomly chosen clusters. At the critical point the cluster size distribution is a power-law, i.e. there are clusters of all sizes, so one expects the information entropy to attain a maximum. As expected, our results show that the entropy attains a maximum at this point for classical percolation. Surprisingly, for explosive percolation the maximum entropy does not match the critical point. Moreover, we show that it is possible determine the critical point without using the conventional order parameter, just analysing the entropy's derivatives.Comment: 6 pages, 6 figure

    Conditions for the onset of the current filamentation instability in the laboratory

    Full text link
    Current Filamentation Instability (CFI) is capable of generating strong magnetic fields relevant to explain radiation processes in astrophysical objects and lead to the onset of particle acceleration in collisionless shocks. Probing such extreme scenarios in the laboratory is still an open challenge. In this work, we investigate the possibility of using neutral ee^{-} e+e^{+} beams to explore the CFI with realistic parameters, by performing 2D particle-in-cell simulations. We show that CFI can occur unless the rate at which the beam expands due to finite beam emittance is larger than the CFI growth rate and as long as the role of competing electrostatic two-stream instability (TSI) is negligible. We also show that the longitudinal energy spread, typical of plasma based accelerated electron-positron fireball beams, plays a minor role in the growth of CFI in these scenarios

    Optimization conditions of UV-C radiation combined with ultrasound-assisted extraction of cherry tomato (Lycopersicon esculentum) lycopene extract

    Get PDF
    The aim of this work was to study the effect of UV-C radiation on ultrasound assisted extraction (UAE) of cherry tomato bioactive compounds. Cherry tomatoes were exposed to two UV-C radiation doses (0.5 and 1.0 J cm−2 ) and stored at 20 ± 0.5 oC for 7 days. Next, they were lyophilized, and the bioactive compounds were extracted by UAE at 20 KHz. To evaluate the effectiveness of the extraction process of the bioactive compounds, a CCRD (central composite rotational design) was used together with RSM (response surface methodology), for extraction times from 4 to 12 minutes and concentrations (g of lyophilized product / L of ethanol) of 1:10, 1:20 and 1:30. The extracts obtained from the irradiated tomatoes presented 5.8 times more lycopene content than the controls and higher antioxidant activity was obtained for 4 and 8 min, in the concentrations 1:10 and 1:20 (m v−1). Through numerical model optimization, optimal extraction conditions were obtained. The results demonstrated that by previously irradiating tomatoes with UV-C light, the UAE yielded considerably higher amounts of lycopene and other bioactives.CNPq (National Council of Technological and Scientific Development, Brazil), Erasmus Mundus action 2; Fellow Mundus Project; Department of Chemical Engineering and Food Engineering (UFSC - Brazil) and the Department of Food Engineering (UAlg - Portugal) .info:eu-repo/semantics/publishedVersio

    A Comprehensive View of a Strongly Lensed Planck-Associated Submillimeter Galaxy

    Get PDF
    We present high-resolution maps of stars, dust, and molecular gas in a strongly lensed submillimeter galaxy (SMG) at z = 3.259. HATLAS J114637.9–001132 is selected from the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) as a strong lens candidate mainly based on its unusually high 500 μm flux density (~300 mJy). It is the only high-redshift Planck detection in the 130 deg^2 H-ATLAS Phase-I area. Keck Adaptive Optics images reveal a quadruply imaged galaxy in the K band while the Submillimeter Array and the Jansky Very Large Array show doubly imaged 880 μm and CO(1→0) sources, indicating differentiated distributions of the various components in the galaxy. In the source plane, the stars reside in three major kpc-scale clumps extended over ~1.6 kpc, the dust in a compact (~1 kpc) region ~3 kpc north of the stars, and the cold molecular gas in an extended (~7 kpc) disk ~5 kpc northeast of the stars. The emissions from the stars, dust, and gas are magnified by ~17, ~8, and ~7 times, respectively, by four lensing galaxies at z ~ 1. Intrinsically, the lensed galaxy is a warm (T_(dust) ~ 40-65 K), hyper-luminous (L_(IR) ~ 1.7 × 10^(13) L_☉; star formation rate (SFR) ~2000 M_☉ yr^(–1)), gas-rich (M_(gas)/M_(baryon) ~ 70%), young (M_(stellar)/SFR ~ 20 Myr), and short-lived (M_(gas)/SFR ~ 40 Myr) starburst. With physical properties similar to unlensed z > 2 SMGs, HATLAS J114637.9–001132 offers a detailed view of a typical SMG through a powerful cosmic microscope

    Chaos and Synchronized Chaos in an Earthquake Model

    Full text link
    We show that chaos is present in the symmetric two-block Burridge-Knopoff model for earthquakes. This is in contrast with previous numerical studies, but in agreement with experimental results. In this system, we have found a rich dynamical behavior with an unusual route to chaos. In the three-block system, we see the appearance of synchronized chaos, showing that this concept can have potential applications in the field of seismology.Comment: To appear in Physical Review Letters (13 pages, 6 figures
    corecore