591 research outputs found
Four Years Later: How the 2006 Amendments to the Federal Rules Have Reshaped the E-Discovery Landscape and are Revitalizing the Civil Justice System
The 2006 amendments to the Federal Rules of Civil Procedure, which were enacted to address the potentially immense burden involved in the discovery of electronically-stored information (“ESI”), set in motion a process that is revitalizing the primary purpose of the Federal Rules of Civil Procedure adopted nearly seventy years earlier: “to secure the just, speedy, and inexpensive determination of every action and proceeding.” One of the principal means through which the Federal Rules of Civil Procedure achieve this purpose is by allowing for the discovery of “any nonprivileged matter that is relevant to any party’s claim or defense.” The reasoning behind these liberal discovery rules is that once parties know, ostensibly through discovery, their respective positions in a dispute, they will reach a resolution more quickly and efficiently
Swelling of acetylated wood in organic liquids
To investigate the affinity of acetylated wood for organic liquids, Yezo
spruce wood specimens were acetylated with acetic anhydride, and their swelling
in various liquids were compared to those of untreated specimens. The
acetylated wood was rapidly and remarkably swollen in aprotic organic liquids
such as benzene and toluene in which the untreated wood was swollen only
slightly and/or very slowly. On the other hand, the swelling of wood in water,
ethylene glycol and alcohols remained unchanged or decreased by the
acetylation. Consequently the maximum volume of wood swollen in organic liquids
was always larger than that in water. The effect of acetylation on the maximum
swollen volume of wood was greater in liquids having smaller solubility
parameters. The easier penetration of aprotic organic liquids into the
acetylated wood was considered to be due to the scission of hydrogen bonds
among the amorphous wood constituents by the substitution of hydroxyl groups
with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society
Environmentally clean access to Antarctic subglacial aquatic environments
Subglacial Antarctic aquatic environments are important targets for scientific exploration due to the unique ecosystems they support and their sediments containing palaeoenvironmental records. Directly accessing these environments while preventing forward contamination and demonstrating that it has not been introduced is logistically challenging. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project designed, tested and implemented a microbiologically and chemically clean method of hot-water drilling that was subsequently used to access subglacial aquatic environments. We report microbiological and biogeochemical data collected from the drilling system and underlying water columns during sub-ice explorations beneath the McMurdo and Ross ice shelves and Whillans Ice Stream. Our method reduced microbial concentrations in the drill water to values three orders of magnitude lower than those observed in Whillans Subglacial Lake. Furthermore, the water chemistry and composition of microorganisms in the drill water were distinct from those in the subglacial water cavities. The submicron filtration and ultraviolet irradiation of the water provided drilling conditions that satisfied environmental recommendations made for such activities by national and international committees. Our approach to minimizing forward chemical and microbiological contamination serves as a prototype for future efforts to access subglacial aquatic environments beneath glaciers and ice sheets
Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica
Subglacial Lake Whillans (SLW), West Antarctica, is an active component of the subglacial hydrological network located beneath 800 m of ice. The fill and drain behavior of SLW leads to long (years to decades) water residence times relative to those in mountain glacier systems. Here, we present the aqueous geochemistry of the SLW water column and pore waters from a 38-cm-long sediment core. Stable isotopes indicate that the water is primarily sourced from basal-ice melt with a minor contribution from seawater that reaches a maximum of ~6% in pore water at the bottom of the sediment core. Silicate weathering products dominate the crustal (non-seawater) component of lake- and pore-water solutes, and there is evidence for cation exchange processes within the clay-rich lake sediments. The crustal solute component ranges from 6 meq L -1 in lake waters to 17 meq L -1 in the deepest pore waters. The porewater profiles of the major dissolved ions indicate a more concentrated solute source at depth (>38 cm). The combination of significant seawater and crustal components to SLW lake and sediment pore waters in concert with ion exchange processes result in a weathering regime that contrasts with other subglacial systems. The results also indicate cycling of marine water sourced from the sediments back to the ocean during lake drainage events
Enhanced inverse bremsstrahlung heating rates in a strong laser field
Test particle studies of electron scattering on ions, in an oscillatory
electromagnetic field have shown that standard theoretical assumptions of small
angle collisions and phase independent orbits are incorrect for electron
trajectories with drift velocities smaller than quiver velocity amplitude. This
leads to significant enhancement of the electron energy gain and the inverse
bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as
Coulomb focusing and correlated collisions of electrons being brought back to
the same ion by the oscillatory field are responsible for large angle, head-on
scattering processes. The statistical importance of these trajectories has been
examined for mono-energetic beam-like, Maxwellian and highly anisotropic
electron distribution functions. A new scaling of the inverse bremsstrahlung
heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure
Phase transitions and configuration space topology
Equilibrium phase transitions may be defined as nonanalytic points of
thermodynamic functions, e.g., of the canonical free energy. Given a certain
physical system, it is of interest to understand which properties of the system
account for the presence of a phase transition, and an understanding of these
properties may lead to a deeper understanding of the physical phenomenon. One
possible approach of this issue, reviewed and discussed in the present paper,
is the study of topology changes in configuration space which, remarkably, are
found to be related to equilibrium phase transitions in classical statistical
mechanical systems. For the study of configuration space topology, one
considers the subsets M_v, consisting of all points from configuration space
with a potential energy per particle equal to or less than a given v. For
finite systems, topology changes of M_v are intimately related to nonanalytic
points of the microcanonical entropy (which, as a surprise to many, do exist).
In the thermodynamic limit, a more complex relation between nonanalytic points
of thermodynamic functions (i.e., phase transitions) and topology changes is
observed. For some class of short-range systems, a topology change of the M_v
at v=v_t was proved to be necessary for a phase transition to take place at a
potential energy v_t. In contrast, phase transitions in systems with long-range
interactions or in systems with non-confining potentials need not be
accompanied by such a topology change. Instead, for such systems the
nonanalytic point in a thermodynamic function is found to have some
maximization procedure at its origin. These results may foster insight into the
mechanisms which lead to the occurrence of a phase transition, and thus may
help to explore the origin of this physical phenomenon.Comment: 22 pages, 6 figure
- …