2 research outputs found

    Cyclic Maya diagrams and rational solutions of higher order Painlevé systems

    Get PDF
    This paper focuses on the construction of rational solutions for the A2n-Painleve system, also called the Noumi-Yamada system, which are considered the higher order generalizations of PIV. In this even case, we introduce a method to construct the rational solutions based on cyclic dressing chains of Schrodinger operators with potentials in the class of rational extensions of the harmonic oscillator. Each potential in the chain can be indexed by a single Maya diagram and expressed in terms of a Wronskian determinant whose entries are Hermite polynomials. We introduce the notion of cyclic Maya diagrams and we characterize them for any possible period, using the concepts of genus and interlacing. The resulting classes of solutions can be expressed in terms of special polynomials that generalize the families of generalized Hermite, generalized Okamoto and Umemura polynomials, showing that they are particular cases of a larger family

    Capacity estimates for optical transmission based on the nonlinear Fourier transform

    Get PDF
    What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km
    corecore