5 research outputs found

    New clinical trial designs in the era of precision medicine

    Get PDF
    Cancer treatment has made significant strides towards the promise of personalized medicine. Recent scientific advances have shown that there are numerous genetic deregulations that are common in multiple cancer types, raising the possibility of developing drugs targeting those deregulations irrespective of the tumour type. Precision Cancer Medicine (PCM) was born out of accumulated evidence matching targeted agents with these tumour molecular deregulations. At the same time, the therapeutic armamentarium is rapidly increasing and the number of new drugs (including immune-oncology agents) entering drug development continues to rise. These factors, added to strong collaboration with regulatory agencies, which have approved novel agents based on data obtained from phase 1/2 trials, have led to unprecedented evolution in the design of early-stage clinical trials. Currently, we have seen rapid phase 1 dose-escalation trials followed by remarkably large expansion cohorts, and are witnessing the emergence of new trials, such as adaptive studies with basket and umbrella designs aimed at optimizing the biomarker-drug co-development process. Alongside the growing complexity of these clinical trials, new frameworks for stronger and faster collaboration between all stakeholders in drug development, including academic institutions and frameworks, clinicians, pharma companies and regulatory agencies, have been established. In this review article, we describe the main challenges and opportunities that these new trial designs may provide for a more efficient drug development process, which may ultimately help ensure that PCM becomes a reality for patients

    Evaluating radiological response in pancreatic neuroendocrine tumours treated with sunitinib : comparison of Choi versus RECIST criteria (CRIPNET_ GETNE1504 study)

    Get PDF
    The purpose of our study was to analyse the usefulness of Choi criteria versus RECIST in patients with pancreatic neuroendocrine tumours (PanNETs) treated with sunitinib. A multicentre, prospective study was conducted in 10 Spanish centres. Computed tomographies, at least every 6 months, were centrally evaluated until tumour progression. One hundred and seven patients were included. Median progression-free survival (PFS) by RECIST and Choi were 11.42 (95% confidence interval [CI], 9.7-15.9) and 15.8 months (95% CI, 13.9-25.7). PFS by Choi (Kendall's τ = 0.72) exhibited greater correlation with overall survival (OS) than PFS by RECIST (Kendall's τ = 0.43). RECIST incorrectly estimated prognosis in 49.6%. Partial response rate increased from 12.8% to 47.4% with Choi criteria. Twenty-four percent of patients with progressive disease according to Choi had stable disease as per RECIST, overestimating treatment effect. Choi criteria predicted PFS/OS. Changes in attenuation occurred early and accounted for 21% of the variations in tumour volume. Attenuation and tumour growth rate (TGR) were associated with improved survival. Choi criteria were able to capture sunitinib's activity in a clinically significant manner better than RECIST; their implementation in standard clinical practice shall be strongly considered in PanNET patients treated with this drug

    Biomarker analysis beyond angiogenesis : RAS/RAF mutation status, tumour sidedness, and second-line ramucirumab efficacy in patients with metastatic colorectal carcinoma from RAISE-a global phase III study

    Get PDF
    Altres ajuts: This work was supported by Eli Lilly and Company. No grant number is applicable.: Second-line treatment with ramucirumab+FOLFIRI improved overall survival (OS) versus placebo+FOLFIRI for patients with metastatic colorectal carcinoma (CRC) [hazard ratio (HR)=0.84, 95% CI 0.73-0.98, P = 0.022]. Post hoc analyses of RAISE patient data examined the association of RAS/RAF mutation status and the anatomical location of the primary CRC tumour (left versus right) with efficacy parameters. Patient tumour tissue was classified as BRAF mutant, KRAS/NRAS (RAS) mutant, or RAS/BRAF wild-type. Left-CRC was defined as the splenic flexure, descending and sigmoid colon, and rectum; right-CRC included transverse, ascending colon, and cecum. RAS/RAF mutation status was available for 85% of patients (912/1072) and primary tumour location was known for 94.4% of patients (1012/1072). A favourable and comparable ramucirumab treatment effect was observed for patients with RAS mutations (OS HR = 0.86, 95% CI 0.71-1.04) and patients with RAS/BRAF wild-type tumours (OS HR = 0.86, 95% CI 0.64-1.14). Among the 41 patients with BRAF -mutated tumours, the ramucirumab benefit was more notable (OS HR = 0.54, 95% CI 0.25-1.13), although, as with the other genetic sub-group analyses, differences were not statistically significant. Progression-free survival (PFS) data followed the same trend. Treatment-by-mutation status interaction tests (OS P = 0.523, PFS P = 0.655) indicated that the ramucirumab benefit was not statistically different among the mutation sub-groups, although the small sample size of the BRAF group limited the analysis. Addition of ramucirumab to FOLFIRI improved left-CRC median OS by 2.5 month over placebo (HR = 0.81, 95% CI 0.68-0.97); median OS for ramucirumab-treated patients with right-CRC was 1.1 month over placebo (HR = 0.97, 95% CI 0.75-1.26). The treatment-by-sub-group interaction was not statistically significant for tumour sidedness (P = 0.276). In the RAISE study, the addition of ramucirumab to FOLFIRI improved patient outcomes, regardless of RAS/RAF mutation status, and tumour sidedness. Ramucirumab treatment provided a numerically substantial benefit in BRAF -mutated tumours, although the P -values were not statistically significant. NCT01183780

    New clinical trial designs in the era of precision medicine

    No full text
    Cancer treatment has made significant strides towards the promise of personalized medicine. Recent scientific advances have shown that there are numerous genetic deregulations that are common in multiple cancer types, raising the possibility of developing drugs targeting those deregulations irrespective of the tumour type. Precision Cancer Medicine (PCM) was born out of accumulated evidence matching targeted agents with these tumour molecular deregulations. At the same time, the therapeutic armamentarium is rapidly increasing and the number of new drugs (including immune-oncology agents) entering drug development continues to rise. These factors, added to strong collaboration with regulatory agencies, which have approved novel agents based on data obtained from phase 1/2 trials, have led to unprecedented evolution in the design of early-stage clinical trials. Currently, we have seen rapid phase 1 dose-escalation trials followed by remarkably large expansion cohorts, and are witnessing the emergence of new trials, such as adaptive studies with basket and umbrella designs aimed at optimizing the biomarker-drug co-development process. Alongside the growing complexity of these clinical trials, new frameworks for stronger and faster collaboration between all stakeholders in drug development, including academic institutions and frameworks, clinicians, pharma companies and regulatory agencies, have been established. In this review article, we describe the main challenges and opportunities that these new trial designs may provide for a more efficient drug development process, which may ultimately help ensure that PCM becomes a reality for patients

    Biomarker analysis beyond angiogenesis : RAS/RAF mutation status, tumour sidedness, and second-line ramucirumab efficacy in patients with metastatic colorectal carcinoma from RAISE-a global phase III study

    No full text
    Altres ajuts: This work was supported by Eli Lilly and Company. No grant number is applicable.: Second-line treatment with ramucirumab+FOLFIRI improved overall survival (OS) versus placebo+FOLFIRI for patients with metastatic colorectal carcinoma (CRC) [hazard ratio (HR)=0.84, 95% CI 0.73-0.98, P = 0.022]. Post hoc analyses of RAISE patient data examined the association of RAS/RAF mutation status and the anatomical location of the primary CRC tumour (left versus right) with efficacy parameters. Patient tumour tissue was classified as BRAF mutant, KRAS/NRAS (RAS) mutant, or RAS/BRAF wild-type. Left-CRC was defined as the splenic flexure, descending and sigmoid colon, and rectum; right-CRC included transverse, ascending colon, and cecum. RAS/RAF mutation status was available for 85% of patients (912/1072) and primary tumour location was known for 94.4% of patients (1012/1072). A favourable and comparable ramucirumab treatment effect was observed for patients with RAS mutations (OS HR = 0.86, 95% CI 0.71-1.04) and patients with RAS/BRAF wild-type tumours (OS HR = 0.86, 95% CI 0.64-1.14). Among the 41 patients with BRAF -mutated tumours, the ramucirumab benefit was more notable (OS HR = 0.54, 95% CI 0.25-1.13), although, as with the other genetic sub-group analyses, differences were not statistically significant. Progression-free survival (PFS) data followed the same trend. Treatment-by-mutation status interaction tests (OS P = 0.523, PFS P = 0.655) indicated that the ramucirumab benefit was not statistically different among the mutation sub-groups, although the small sample size of the BRAF group limited the analysis. Addition of ramucirumab to FOLFIRI improved left-CRC median OS by 2.5 month over placebo (HR = 0.81, 95% CI 0.68-0.97); median OS for ramucirumab-treated patients with right-CRC was 1.1 month over placebo (HR = 0.97, 95% CI 0.75-1.26). The treatment-by-sub-group interaction was not statistically significant for tumour sidedness (P = 0.276). In the RAISE study, the addition of ramucirumab to FOLFIRI improved patient outcomes, regardless of RAS/RAF mutation status, and tumour sidedness. Ramucirumab treatment provided a numerically substantial benefit in BRAF -mutated tumours, although the P -values were not statistically significant. NCT01183780
    corecore