339 research outputs found

    Development of superlattice CrNNbN coatings for joint replacements deposited by High Power Impulse Magnetron Sputtering

    Get PDF
    The demand for reliable coating on medical implants is ever growing. In this research, enhanced performance of medical implants was achieved by a CrN/NbN coating utilising nanoscale multilayer/superlattice structure. The advantages of the novel High Power Impulse Magnetron Sputtering technology, namely its unique highly ionised plasma were exploited to deposit dense and strongly adherent coatings on Co-Cr implants. TEM analyses revealed coating superlattice structure with bi-layer thickness of 3.5 nm. CrN/NbN deposited on Co-Cr samples showed exceptionally high adhesion, critical load values of LC2= 50 N in scratch adhesion tests. Nanoindentation tests showed high hardness of 34 GPa and Young's modulus of 447 GPa. Low coefficient of friction (µ) 0.49 and coating wear coefficient (KC) = 4.94 x 10-16 m3N-1m-1 were recorded in dry sliding tests. Metal ion release studies showed a reduction in Co, Cr and Mo release at physiological and elevated temperatures, (70 oC) to almost undetectable levels (<1 ppb). Rotating beam fatigue testing showed a significant increase in fatigue strength from 349±59 MPa (uncoated) to 539±59 MPa (coated). In vitro biological testing has been performed in order to assess the safety of the coating in biological environment, cytotoxicity, genotoxicity and sensitisation testing have been performed, all showing no adverse effects. Keywords: Orthopaedic implant, High Power Impulse Magnetron Sputtering, Superlattice coating, Corrosion, Biocompatibility

    Synthesis and biological characterisation of 18F-SIG343 and 18F-SIG353, novel and high selectivity σ2 radiotracers, for tumour imaging properties

    Get PDF
    Sigma2 (σ2) receptors are highly expressed in cancer cell lines and in tumours. Two novel selective 18F-phthalimido σ2 ligands, 18F-SIG343 and 18F-SIG353, were prepared and characterised for their potential tumour imaging properties. © 2013 Nguyen et al.; licensee Springer.© Nguyen et al.; licensee Springer. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Histone H2A and H2B Are Monoubiquitinated at AID-Targeted Loci

    Get PDF
    Background: Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets, the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined. Methodology/Principal Findings: Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt\u27s B cell line, Ramos, revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes showed enrichment of the expressed V(H) and S gamma 3 switch regions upon ChIP with antibody specific to AID and to monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B within discrete nuclear foci. Conclusions/Significance: Our results indicate that monoubiquitinated histones accompany active somatic hypermutation, revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation

    Complete genome characterization of two wild-type measles viruses from Vietnamese infants during the 2014 outbreak

    Get PDF
    A large measles virus outbreak occurred across Vietnam in 2014. We identified and obtained complete measles virus genomes in stool samples collected from two diarrheal pediatric patients in Dong Thap Province. These are the first complete genome sequences of circulating measles viruses in Vietnam during the 2014 measles outbreak

    Genome sequences of a novel Vietnamese bat bunyavirus

    Get PDF
    To document the viral zoonotic risks in Vietnam, fecal samples were systematically collected from a number of mammals in southern Vietnam and subjected to agnostic deep sequencing. We describe here novel Vietnamese bunyavirus sequences detected in bat feces. The complete L and S segments from 14 viruses were determined
    corecore