6 research outputs found

    The Hippocampal System as the Cortical Resource Manager: a model connecting psychology, anatomy and physiology

    No full text
    A model is described in which the hippocampal system functions as resource manager for the neocortex. This model is developed from an architectural concept for the brain as a whole within which the receptive fields of neocortical columns can gradually increase but with some limited exceptions tend not to decrease. The definition process for receptive fields is constrained so that they overlap as little as possible, and change as little as possible, but at least a minimum number of columns detect their fields within every sensory input state. Below this minimum, the receptive fields of some columns are increased slightly until the minimum level is reached. The columns in which this increase occurs are selected by a competitive process in the hippocampal system that identifies those in which only a relatively small increase is required, and sends signals to those columns that trigger the increase. These increases in receptive fields are the information record that forms the declarative memory of the input state. Episodic memory activates a set of columns in which receptive fields increased simultaneously at some point in the past, and the hippocampal system is therefore the appropriate source for information guiding access to such memories. Semantic memory associates columns that are often active (with or without increases in receptive fields) simultaneously. Initially, the hippocampus can guide access to such memories on the basis of initial information recording, but to avoid corruption of the information needed for ongoing resource management, access control shifts to other parts of the neocortex. The roles of the mammillary bodies, amygdala and anterior thalamic nucleus can be understood as modulating information recording in accordance with various behavioral priorities. During sleep, provisional physical connectivity is created that supports receptive field increases in the subsequent wake period, but previously created memories are not affected. This model matches a wide range of neuropsychological observation better than alternative hippocampal models. The information mechanisms required by the model are consistent with known brain anatomy and neuron physiology.

    Lineage-specific laminar organization of cortical GABAergic interneurons

    No full text
    In the cerebral cortex, pyramidal cells and interneurons are generated in distant germinal zones, and so the mechanisms that control their precise assembly into specific microcircuits remain an enigma. Here we report that cortical interneurons labeled at the clonal level do not distribute randomly but rather have a strong tendency to cluster in the mouse neocortex. This behavior is common to different classes of interneurons, independently of their origin. Interneuron clusters are typically contained within one or two adjacent cortical layers, are largely formed by isochronically generated neurons and populate specific layers, as revealed by unbiased hierarchical clustering methods. Our results suggest that different progenitor cells give rise to interneurons populating infra- and supragranular cortical layers, which challenges current views of cortical neurogenesis. Thus, specific lineages of cortical interneurons seem to be produced to primarily mirror the laminar structure of the cerebral cortex, rather than its columnar organization

    Somatosensory System

    No full text
    corecore