110 research outputs found
Pedestrian Trajectory Prediction with Structured Memory Hierarchies
This paper presents a novel framework for human trajectory prediction based
on multimodal data (video and radar). Motivated by recent neuroscience
discoveries, we propose incorporating a structured memory component in the
human trajectory prediction pipeline to capture historical information to
improve performance. We introduce structured LSTM cells for modelling the
memory content hierarchically, preserving the spatiotemporal structure of the
information and enabling us to capture both short-term and long-term context.
We demonstrate how this architecture can be extended to integrate salient
information from multiple modalities to automatically store and retrieve
important information for decision making without any supervision. We evaluate
the effectiveness of the proposed models on a novel multimodal dataset that we
introduce, consisting of 40,000 pedestrian trajectories, acquired jointly from
a radar system and a CCTV camera system installed in a public place. The
performance is also evaluated on the publicly available New York Grand Central
pedestrian database. In both settings, the proposed models demonstrate their
capability to better anticipate future pedestrian motion compared to existing
state of the art.Comment: To appear in ECML-PKDD 201
An analysis of waves underlying grid cell firing in the medial enthorinal cortex
Layer II stellate cells in the medial enthorinal cortex (MEC) express hyperpolarisation-activated cyclic-nucleotide-gated (HCN) channels that allow for rebound spiking via an I_h current in response to hyperpolarising synaptic input. A computational modelling study by Hasselmo [2013 Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex. Phil. Trans. R. Soc. B 369: 20120523] showed that an inhibitory network of such cells can support periodic travelling waves with a period that is controlled by the dynamics of the I_h current. Hasselmo has suggested that these waves can underlie the generation of grid cells, and that the known difference in I_h resonance frequency along the dorsal to ventral axis can explain the observed size and spacing between grid cell firing fields. Here we develop a biophysical spiking model within a framework that allows for analytical tractability. We combine the simplicity of integrate-and-fire neurons with a piecewise linear caricature of the gating dynamics for HCN channels to develop a spiking neural field model of MEC. Using techniques primarily drawn from the field of nonsmooth dynamical systems we show how to construct periodic travelling waves, and in particular the dispersion curve that determines how wave speed varies as a function of period. This exhibits a wide range of long wavelength solutions, reinforcing the idea that rebound spiking is a candidate mechanism for generating grid cell firing patterns. Importantly we develop a wave stability analysis to show how the maximum allowed period is controlled by the dynamical properties of the I_h current. Our theoretical work is validated by numerical simulations of the spiking model in both one and two dimensions
Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement Learning
Reinforcement learning (RL) provides an influential characterization of the brain's mechanisms for learning to make advantageous choices. An important problem, though, is how complex tasks can be represented in a way that enables efficient learning. We consider this problem through the lens of spatial navigation, examining how two of the brain's location representationsβhippocampal place cells and entorhinal grid cellsβare adapted to serve as basis functions for approximating value over space for RL. Although much previous work has focused on these systems' roles in combining upstream sensory cues to track location, revisiting these representations with a focus on how they support this downstream decision function offers complementary insights into their characteristics. Rather than localization, the key problem in learning is generalization between past and present situations, which may not match perfectly. Accordingly, although neural populations collectively offer a precise representation of position, our simulations of navigational tasks verify the suggestion that RL gains efficiency from the more diffuse tuning of individual neurons, which allows learning about rewards to generalize over longer distances given fewer training experiences. However, work on generalization in RL suggests the underlying representation should respect the environment's layout. In particular, although it is often assumed that neurons track location in Euclidean coordinates (that a place cell's activity declines βas the crow fliesβ away from its peak), the relevant metric for value is geodesic: the distance along a path, around any obstacles. We formalize this intuition and present simulations showing how Euclidean, but not geodesic, representations can interfere with RL by generalizing inappropriately across barriers. Our proposal that place and grid responses should be modulated by geodesic distances suggests novel predictions about how obstacles should affect spatial firing fields, which provides a new viewpoint on data concerning both spatial codes
Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory
Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code
- β¦