143 research outputs found
Building up spacetime with quantum entanglement
In this essay, we argue that the emergence of classically connected
spacetimes is intimately related to the quantum entanglement of degrees of
freedom in a non-perturbative description of quantum gravity. Disentangling the
degrees of freedom associated with two regions of spacetime results in these
regions pulling apart and pinching off from each other in a way that can be
quantified by standard measures of entanglement.Comment: Gravity Research Foundation essay, 7 pages, LaTeX, 5 figure
On classical finite and affine W-algebras
This paper is meant to be a short review and summary of recent results on the
structure of finite and affine classical W-algebras, and the application of the
latter to the theory of generalized Drinfeld-Sokolov hierarchies.Comment: 12 page
Twisted Bethe equations from a twisted S-matrix
All-loop asymptotic Bethe equations for a 3-parameter deformation of
AdS5/CFT4 have been proposed by Beisert and Roiban. We propose a Drinfeld twist
of the AdS5/CFT4 S-matrix, together with c-number diagonal twists of the
boundary conditions, from which we derive these Bethe equations. Although the
undeformed S-matrix factorizes into a product of two su(2|2) factors, the
deformed S-matrix cannot be so factored. Diagonalization of the corresponding
transfer matrix requires a generalization of the conventional algebraic Bethe
ansatz approach, which we first illustrate for the simpler case of the twisted
su(2) principal chiral model. We also demonstrate that the same twisted Bethe
equations can alternatively be derived using instead untwisted S-matrices and
boundary conditions with operatorial twists.Comment: 42 pages; v2: a new appendix on sl(2) grading, 2 additional
references, and some minor changes; v3: improved Appendix D, additional
references, and further minor changes, to appear in JHE
On the Use of Quantum Algebras in Rotation-Vibration Spectroscopy
A two-parameter deformation of the Lie algebra u is used, in conjunction
with the rotor system and the oscillator system, to generate a model for
rotation-vibration spectroscopy of molecules and nuclei.Comment: 10 pages, Latex File, published in Modern Group Theoretical Methods
in Physics, J. Bertrand et al. (eds.), Kluwer Academic Publishers (1995),
27-3
On Yangian and Long Representations of the Centrally Extended su(2|2) Superalgebra
The centrally extended su(2|2) superalgebra is an asymptotic symmetry of the
light-cone string sigma model on AdS5 x S5. We consider an evaluation
representation of the conventional Yangian built over a particular
16-dimensional long representation of the centrally extended su(2|2).
Interestingly, we find that S-matrices compatible with this evaluation
representation do not exist. On the other hand, by requiring centrally extended
su(2|2) invariance and explicitly solving the Yang-Baxter equation, we find a
scattering matrix for long-short representations of the Lie superalgebra. We
notice that this S-matrix is invariant under a different representation of
non-evaluation type, induced from the tensor product of short representations.
Our findings concern the conventional Yangian only, and are not applied to
possible algebraic extensions of the latter.Comment: Version accepted for publication in JHE
M. Kontsevich's graph complex and the Grothendieck-Teichmueller Lie algebra
We show that the zeroth cohomology of M. Kontsevich's graph complex is
isomorphic to the Grothendieck-Teichmueller Lie algebra grt_1. The map is
explicitly described. This result has applications to deformation quantization
and Duflo theory. We also compute the homotopy derivations of the Gerstenhaber
operad. They are parameterized by grt_1, up to one class (or two, depending on
the definitions). More generally, the homotopy derivations of the (non-unital)
E_n operads may be expressed through the cohomology of a suitable graph
complex. Our methods also give a second proof of a result of H. Furusho,
stating that the pentagon equation for grt_1-elements implies the hexagon
equation
Yangian symmetry of light-like Wilson loops
We show that a certain class of light-like Wilson loops exhibits a Yangian
symmetry at one loop, or equivalently, in an Abelian theory. The Wilson loops
we discuss are equivalent to one-loop MHV amplitudes in N=4 super Yang-Mills
theory in a certain kinematical regime. The fact that we find a Yangian
symmetry constraining their functional form can be thought of as the effect of
the original conformal symmetry associated to the scattering amplitudes in the
N=4 theory.Comment: 15 pages, 5 figure
Lunin-Maldacena backgrounds from the classical Yang-Baxter equation -- Towards the gravity/CYBE correspondence
We consider \gamma-deformations of the AdS_5xS^5 superstring as Yang-Baxter
sigma models with classical r-matrices satisfying the classical Yang-Baxter
equation (CYBE). An essential point is that the classical r-matrices are
composed of Cartan generators only and then generate abelian twists. We present
examples of the r-matrices that lead to real \gamma-deformations of the
AdS_5xS^5 superstring. Finally we discuss a possible classification of
integrable deformations and the corresponding gravity solution in terms of
solutions of CYBE. This classification may be called the gravity/CYBE
correspondence.Comment: 18 pages, no figure, LaTeX, v2:references and further clarifications
adde
The Impact of Non-Equipartition on Cosmological Parameter Estimation from Sunyaev-Zel'dovich Surveys
The collisionless accretion shock at the outer boundary of a galaxy cluster
should primarily heat the ions instead of electrons since they carry most of
the kinetic energy of the infalling gas. Near the accretion shock, the density
of the intracluster medium is very low and the Coulomb collisional timescale is
longer than the accretion timescale. Electrons and ions may not achieve
equipartition in these regions. Numerical simulations have shown that the
Sunyaev-Zel'dovich observables (e.g., the integrated Comptonization parameter
Y) for relaxed clusters can be biased by a few percent. The Y-mass relation can
be biased if non-equipartition effects are not properly taken into account.
Using a set of hydrodynamical simulations, we have calculated three potential
systematic biases in the Y-mass relations introduced by non-equipartition
effects during the cross-calibration or self-calibration when using the galaxy
cluster abundance technique to constraint cosmological parameters. We then use
a semi-analytic technique to estimate the non-equipartition effects on the
distribution functions of Y (Y functions) determined from the extended
Press-Schechter theory. Depending on the calibration method, we find that
non-equipartition effects can induce systematic biases on the Y functions, and
the values of the cosmological parameters Omega_8, sigma_8, and the dark energy
equation of state parameter w can be biased by a few percent. In particular,
non-equipartition effects can introduce an apparent evolution in w of a few
percent in all of the systematic cases we considered. Techniques are suggested
to take into account the non-equipartition effect empirically when using the
cluster abundance technique to study precision cosmology. We conclude that
systematic uncertainties in the Y-mass relation of even a few percent can
introduce a comparable level of biases in cosmological parameter measurements.Comment: 10 pages, 3 figures, accepted for publication in the Astrophysical
Journal, abstract abridged slightly. Typos corrected in version
Observation of a red-blue detuning asymmetry in matter-wave superradiance
We report the first experimental observations of strong suppression of
matter-wave superradiance using blue-detuned pump light and demonstrate a
pump-laser detuning asymmetry in the collective atomic recoil motion. In
contrast to all previous theoretical frameworks, which predict that the process
should be symmetric with respect to the sign of the pump-laser detuning, we
find that for condensates the symmetry is broken. With high condensate
densities and red-detuned light, the familiar distinctive multi-order,
matter-wave scattering pattern is clearly visible, whereas with blue-detuned
light superradiance is strongly suppressed. In the limit of a dilute atomic
gas, however, symmetry is restored.Comment: Accepted by Phys. Rev. Let
- …