54 research outputs found
Dissemination and survival of commercial wine yeast in the vineyard: a large-scale, three years study
The use of commercial wine yeast strains as starters has been extensively generalised over the past two decades. In this study, a large-scale sampling plan was devised over a period of three years in six different vineyards to evaluate the dynamics and survival of industrial yeast strains in the vineyard. A total of 198 grape samples were collected at various distances from the wineries, before and after harvest, and yeast strains isolated after spontaneous fermentation were subsequently identified by molecular methods. Among 3780 yeast strains identified, 296 isolates had a genetic profile identical to that of commercial yeast strains. For a large majority (94%), these strains were recovered at very close proximity to the winery (10-200m). Commercial strains were mostly found in the post harvest samples, reflecting immediate dissemination. Analysis of population variations from year to year indicated that permanent implantation of commercial strains in the vineyard did not occur, but instead that these strains were subject to natural fluctuations of periodical appearance/disappearance like autochthonous strains. Our data show that dissemination of commercial yeast in the vineyard is restricted to short distances and limited periods of times and is largely favoured by the presence of water runoff.ENOSAFE (Nº 762, Programa AGRO, medida 8.1) and the grant nº 657 C2 from the cooperation agreement between the Portuguese Institute for International Scientific and Technological Cooperation (ICCTI) and the French Embassy in Lisbon and the Marie Curie Fellowship of the European Community programme of Quality of Life under Contract QLK4-CT-2001-51873
Phenotypic and genotypic diversity of wine yeasts used for acidic musts
The aim of this study was to examine the physiological and genetic stability of the industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum under acidic stress during fermentation. The yeasts were sub-cultured in aerobic or fermentative conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes, and mitochondrial DNA profiles were assessed after minimum 50 generations. All yeast segregates showed a tendency to increase the range of compounds used as sole carbon sources. The wild strains and their segregates were aneuploidal or diploidal. One of the four strains of S. cerevisiae did not reveal any changes in the electrophoretic profiles of chromosomal and mitochondrial DNA, irrespective of culture conditions. The extent of genomic changes in the other yeasts was strain-dependent. In the karyotypes of the segregates, the loss of up to 2 and the appearance up to 3 bands was noted. The changes in their mtDNA patterns were much broader, reaching 5 missing and 10 additional bands. The only exception was S. bayanus var. uvarum Y.00779, characterized by significantly greater genome plasticity only under fermentative stress. Changes in karyotypes and mtDNA profiles prove that fermentative stress is the main driving force of the adaptive evolution of the yeasts. l-malic acid does not influence the extent of genomic changes and the resistance of wine yeasts exhibiting increased demalication activity to acidic stress is rather related to their ability to decompose this acid. The phenotypic changes in segregates, which were found even in yeasts that did not reveal deviations in their DNA profiles, show that phenotypic characterization may be misleading in wine yeast identification. Because of yeast gross genomic diversity, karyotyping even though it does not seem to be a good discriminative tool, can be useful in determining the stability of wine yeasts. Restriction analysis of mitochondrial DNA appears to be a more sensitive method allowing for an early detection of genotypic changes in yeasts. Thus, if both of these methods are applied, it is possible to conduct the quick routine assessment of wine yeast stability in pure culture collections depositing industrial strains
Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions
We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8–43 strains per fermentation) was associated with high percentage (60–100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0–40%) corresponded to a rather low strain diversity (1–10 strains per fermentation)
Applications of yeast flocculation in biotechnological processes
A review on the main aspects associated with yeast flocculation and its application
in biotechnological processes is presented. This subject is addressed following three
main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast
strains and bioreactor development. In what concerns the basics of yeast flocculation, the
state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast
flocculation is reported. The construction of flocculating yeast strains includes not only the
recombinant constitutive flocculent brewer’s yeast, but also recombinant flocculent yeast
for lactose metabolisation and ethanol production. Furthermore, recent work on the
heterologous β-galactosidase production using a recombinant flocculent Saccharomyces
cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties,
mainly associated with a high solid phase hold-up, a section dedicated to its operation is
presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor
hydrodynamics and mass transfer properties of flocculating cell cultures are considered.
Finally, the paper concludes describing some of the applications of high cell density
flocculation bioreactors and discussing potential new uses of these systems.Fundação para a Ciência e a Tecnologia (FCT) – PRAXIS XXI - BD11306/97
Association between Grape Yeast Communities and the Vineyard Ecosystems
The grape yeast biota from several wine-producing areas, with distinct soil types and grapevine training systems, was assessed on five islands of Azores Archipelago, and differences in yeast communities composition associated with the geographic origin of the grapes were explored. Fifty-seven grape samples belonging to the Vitis vinifera grapevine cultivars Verdelho dos Acores (Verdelho), Arinto da Terceira (Arinto) and Terrantez do Pico (Terrantez) were collected in two consecutive years and 40 spontaneous fermentations were achieved. A total of 1710 yeast isolates were obtained from freshly crushed grapes and 1200 from final stage of fermentations. Twenty-eight species were identified, Hanseniaspura uvarum, Pichia terricola and Metschnikowia pulcherrima being the three most representative species isolated. Candida carpophila was encountered for the first time as an inhabitant of grape or wine-associated environments. In both sampling years, a higher proportion of H. uvarum in fresh grapes from Verdelho cultivar was observed, in comparison with Arinto cultivar. Qualitatively significant differences were found among yeast communities from several locations on five islands of the Archipelago, particularly in locations with distinctive agro-ecological compositions. Our results are in agreement with the statement that grape-associated microbial biogeography is non-randomly associated with interactions of climate, soil, cultivar, and vine training systems in vineyard ecosystems. Our observations strongly support a possible linkage between grape yeast and wine typicality, reinforcing the statement that different viti-cultural terroirs harbor distinctive yeast biota, in particular in vineyards with very distinctive environmental conditions.Joao Drumonde Neves is the recipient of a fellowship of the Azorean Government (M321/006/F/2008) and PROEMPREGO. This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI), and by national funds through FCT by the projects FCOMP-01-0124-008775, PTDC/AGR-ALI/103392/2008 and PTDC/AGR-ALI/121062/2010.info:eu-repo/semantics/publishedVersio
Somatomedin-A bioactivity in rabbit serum after hypophysectomy
International audienc
General aspects of the development and growth of muscle and adipose tissues : characteristics in sheep
International audienc
Development of growth hormone receptors in rabbit and lamb liver after hypophysectomy
International audienc
- …