406 research outputs found

    A tachyonic scalar field with mutually interacting components

    Full text link
    We investigate the tachyonic cosmological potential V(ϕ)V(\phi) in two different cases of the quasi-exponential expansion of universe and discuss various forms of interaction between the two components---matter and the cosmological constant--- of the tachyonic scalar field, which leads to the viable solutions of their respective energy densities. The distinction among the interaction forms is shown to appear in the Om(x)O_{m}(x) diagnostic. Further, the role of the high- and low-redshift observations of the Hubble parameter is discussed to determine the proportionality constants and hence the correct form of matter--cosmological constant interaction.Comment: 14 page

    Consumers discard a lot more food than widely believed: Estimates of global food waste using an energy gap approach and affluence elasticity of food waste

    Get PDF
    This work provides an internationally comparable consumer food waste dataset based on food availability, energy gap and consumer affluence. Such data can be used for constructing meaningful and internationally comparable metrics on food waste, such as those for Sustainable Development Goal 12. The data suggests that consumer food waste follows a linear-log relationship with consumer affluence and starts to emerge when consumers reach a threshold of approximately $6.70/day/capita level of expenditure. These findings also imply that most empirical models overestimate consumption by not accounting for the possibility of food waste in their analysis. The results also show that the most widely cited global estimate of food waste is underestimated by a factor greater than 2 (214 Kcal/day/capita versus 527 Kcal/day/capita). Comparison with estimates of US consumer food waste based on national survey data shows this approach can reasonably reproduce the results without needing extensive data from national surveys

    Combined renin inhibition/(Pro)renin receptor blockade in diabetic retinopathy- a study in transgenic (mREN2)27 rats

    Get PDF
    Dysfunction of renin-angiotensin system (RAS) contributes to the pathogenesis of diabetic retinopathy (DR). Prorenin, the precursor of renin is highly elevated in ocular fluid of diabetic patients with proliferative retinopathy. Prorenin may exert local effects in the eye by binding to the so-called (pro)renin receptor ((P)RR). Here we investigated the combined effects of the renin inhibitor aliskiren and the putative (P)RR blocker handle-region peptide (HRP) on diabetic retinopathy in streptozotocin (STZ)-induced diabetic transgenic (mRen2)27 rats (a model with high plasma prorenin levels) as well as prorenin stimulated cytokine expression in cultured Müller cells. Adult (mRen2)27 rats were randomly divided into the following groups: (1) non-diabetic; (2) diabetic treated with vehicle; (3) diabetic treated with aliskiren (10 mg/kg per day); and (4) diabetic treated with aliskiren+HRP (1 mg/kg per day). Age-matched non-diabetic wildtype Sprague-Dawley rats were used as control. Drugs were administered by osmotic minipumps for three weeks. Transgenic (mRen2)27 rat retinas showed increased apoptotic cell death of both inner retinal neurons and photoreceptors, increased loss of capillaries, as well as increased expression of inflammatory cytokines. These pathological changes were further exacerbated by diabetes. Aliskiren treatment of diabetic (mRen2)27 rats prevented retinal gliosis, and reduced retinal apoptotic cell death, acellular capillaries and the expression of inflammatory cytokines. HRP on top of aliskiren did not provide additional protection. In cultured Müller cells, prorenin significantly increased the expression levels of IL-1α and TNF-α, and this was completely blocked by aliskiren or HRP, their combination, (P)RR siRNA and the AT1R blocker losartan, suggesting that these effects entirely depended on Ang II generation by (P)RR-bound prorenin. In conclusion, the lack of effect of HRP on top of aliskiren, and the Ang II-dependency of t

    Flavour structure of low-energy hadron pair photoproduction

    Full text link
    We consider the process γγH1Hˉ2\gamma\gamma\to H_1\bar H_2 where H1H_1 and H2H_2 are either mesons or baryons. The experimental findings for such quantities as the ppˉp\bar p and KSKSK_SK_S differential cross sections, in the energy range currently probed, are found often to be in disparity with the scaling behaviour expected from hard constituent scattering. We discuss the long-distance pole--resonance contribution in understanding the origin of these phenomena, as well as the amplitude relations governing the short-distance contribution which we model as a scaling contribution. When considering the latter, we argue that the difference found for the KSKSK_SK_S and the K+KK^+K^- integrated cross sections can be attributed to the s-channel isovector component. This corresponds to the ρωa\rho\omega\to a subprocess in the VMD (vector-meson-dominance) language. The ratio of the two cross sections is enhanced by the suppression of the ϕ\phi component, and is hence constrained. We give similar constraints to a number of other hadron pair production channels. After writing down the scaling and pole--resonance contributions accordingly, the direct summation of the two contributions is found to reproduce some salient features of the ppˉp\bar p and K+KK^+K^- data.Comment: 12 pages, 9 figures, revised version to be published in EPJ

    In situ observation of calcium oxide treatment of inclusions in molten steel by confocal microscopy

    Get PDF
    Calcium treatment of aluminum killed steel was observed in situ using high-temperature confocal scanning laser microscope (HT-CSLM). This technique along with a novel experimental design enables continuous observation of clustering behavior of inclusions before and after the calcium treatment. Results show that the increase in average inclusion size in non-calcium-treated condition was much faster compared to calcium-treated condition. Results also show that the magnitude of attractive capillary force between inclusion particles in non-treated condition was about 10−15 N for larger particles (10 µm) and 10−16 N for smaller particles (5 µm) and acting length of force was about 30 µm. In the case of calcium-treated condition, the magnitude and acting length of force was reduced to 10−16 N and 10 µm, respectively, for particles of all sizes. This change in attractive capillary attractive force is due to change in inclusion morphology from solid alumina disks to liquid lens particles during calcium treatment
    corecore