27 research outputs found

    A Novel Hepatitis C Virus Genotyping Method Based on Liquid Microarray

    Get PDF
    The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5′UTR — the most highly conserved region of HCV — and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant™ HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant™ HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant™ HCV assay. Genotype “1” subtypes (1a and 1b) were correctly identified by the Versant™ HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Clozapine associated neutropenia and cytomegalovirus colitis.

    Full text link
    Both diarrhea and colitis associated with clozapine have been reported. We present a case of clozapine-associated neutropenia complicated by cytomegalovirus colitis. The definitive diagnosis was suggested on biopsy which showed eosinophilic intranuclear inclusions suggestive of cytomegalovirus infection, and confirmed on immunohistochemistry. Neutropenia or agranulocytosis in association with clozapine treatment may be complicated by colitis. In such cases, investigations for cytomegalovirus may be indicated

    The prolactin response to sulpiride in major depression: the role of the D2 receptor in depression.

    Full text link
    Multiple lines of investigations have implicated the role of the dopaminergic system in depression. The aim of the study was to characterise the Dopamine D2 receptor sensitivity status in depressed patients versus controls by means of a novel neuro-endocrine challenge test, the prolactin response to sulpiride. In this intervention, ten patients and ten age matched male volunteers were studied. The patients were diagnosed according to DSM-IV criteria, and Montgomery Asberg and Zung scales were done. There was no significant difference in baseline levels of prolactin between the depressed and control groups. Significantly higher prolactin levels after sulpiride challenge were however found in depressed patients than controls at all time points after sulpiride administration. This neuroendocrine challenge paradigm suggests that the prolactin response to sulpiride, a D2 receptor antagonist, is enhanced in depression, which suggests that this receptor might be supersensitive in depression compared to controls. This adds to the data implicating the dopaminergic system in the pathophysiology of depression, and suggests that dopaminergic mechanisms might be a target of therapeutic interest

    Dopamine dysregulation syndrome : implications for a dopamine hypothesis of bipolar disorder

    Full text link
    Objective: Rational therapeutic development in bipolar is hampered by a lack of pathophysiological model. However, there is a wealth of converging data on the role of dopamine in bipolar disorder. This paper therefore examines the possibility of a dopamine hypothesis for bipolar disorder.Method: A literature search was conducted using standard search engines Embase, PyschLIT, PubMed and MEDLINE. In addition, papers and book chapters known to the authors were retrieved and examined for further relevant articles.Results: Collectively, in excess of 100 articles were reviewed from which approximately 75% were relevant to the focus of this paper.Conclusion: Pharmacological models suggest a role of increased dopaminergic drive in mania and the converse in depression. In Parkinson&rsquo;s disease, administration of high-dose dopamine precursors can produce a &lsquo;maniform&rsquo; picture, which switches into a depressive analogue on withdrawal. It is possible that in bipolar disorder there is a cyclical process, where increased dopaminergic transmission in mania leads to a secondary down regulation of dopaminergic receptor sensitivity over time. This may lead to a period of decreased dopaminergic transmission, corresponding with the depressive phase, and the repetition of the cycle. This model, if verified, may have implications for rational drug development.<br /
    corecore