6 research outputs found
Recommended from our members
Dose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV Immunization.
BACKGROUND: The recent West African Ebola epidemic led to accelerated efforts to test Ebola vaccine candidates. As part of the World Health Organisation-led VSV Ebola Consortium (VEBCON), we performed a phase I clinical trial investigating rVSV-ZEBOV (a recombinant vesicular stomatitis virus-vectored Ebola vaccine), which has recently demonstrated protection from Ebola virus disease (EVD) in phase III clinical trials and is currently in advanced stages of licensing. So far, correlates of immune protection are incompletely understood and the role of cell-mediated immune responses has not been comprehensively investigated to date. METHODS: We recruited 30 healthy subjects aged 18-55 into an open-label, dose-escalation phase I trial testing three doses of rVSV-ZEBOV (3Ă—105 plaque-forming units (PFU), 3Ă—106 PFU, 2Ă—107 PFU) (ClinicalTrials.gov; NCT02283099). Main study objectives were safety and immunogenicity, while exploratory objectives included lymphocyte dynamics, cell-mediated immunity and cytokine networks, which were assessed using flow cytometry, ELISpot and LUMINEX assay. FINDINGS: Immunization with rVSV-ZEBOV was well tolerated without serious vaccine-related adverse events. Ebola virus-specific neutralizing antibodies were induced in nearly all individuals. Additionally, vaccinees, particularly within the highest dose cohort, generated Ebola glycoprotein (GP)-specific T cells and initiated a cascade of signaling molecules following stimulation of peripheral blood mononuclear cells with Ebola GP peptides. INTERPRETATION: In addition to a benign safety and robust humoral immunogenicity profile, subjects immunized with 2Ă—107 PFU elicited higher cellular immune responses and stronger interlocked cytokine networks compared to lower dose groups. To our knowledge these data represent the first detailed cell-mediated immuneprofile of a clinical trial testing rVSV-ZEBOV, which is of particular interest in light of its potential upcoming licensure as the first Ebola vaccine. VEBCON trial Hamburg, Germany (NCT02283099)
Rapid dose-dependent Natural Killer (NK) cell modulation and cytokine responses following human rVSV-ZEBOV Ebolavirus vaccination
The rVSV-ZEBOV Ebolavirus vaccine confers protection within days after immunization, suggesting the contribution of innate immune responses. We report modulation of rVSV-ZEBOV vaccinee blood CD56+ NK cell numbers, NKG2D or NKp30 surface receptor expression, Killer Immunoglobulin-like Receptor (KIR)+ cell percentages and NK-cell-related genes on day 1 post immunization. Inverse correlations existed between the concentration of several plasma cytokines and inhibitory KIR+ CD56dim or cytokine-responsive CD56bright NK cells. Thus, NK cells may contribute to the early protective efficacy of rVSV-ZEBOV in humans
Rapid dose-dependent Natural Killer (NK) cell modulation and cytokine responses following human rVSV-ZEBOV Ebolavirus vaccination
The rVSV-ZEBOV Ebolavirus vaccine confers protection within days after immunization, suggesting the contribution of innate immune responses. We report modulation of rVSV-ZEBOV vaccinee blood CD56+ NK cell numbers, NKG2D or NKp30 surface receptor expression, Killer Immunoglobulin-like Receptor (KIR)+ cell percentages and NK-cell-related genes on day 1 post immunization. Inverse correlations existed between the concentration of several plasma cytokines and inhibitory KIR+ CD56dim or cytokine-responsive CD56bright NK cells. Thus, NK cells may contribute to the early protective efficacy of rVSV-ZEBOV in humans
Detectable vesicular stomatitis virus (VSV)–specific humoral and cellular immune responses following VSV–Ebola virus vaccination in humans
In response to the Ebola virus (EBOV) crisis 2013-2016, a recombinant vesicular stomatitis virus (VSV)-based EBOV vaccine was clinically tested. A single-dose regimen of VSV-EBOV revealed a safe and immunogenic profile and demonstrated clinical efficacy. While EBOV-specific immune responses to this candidate vaccine have previously been investigated, limited human data on immunity to the VSV-vector are available. Within the scope of a Phase I study, we performed a comprehensive longitudinal analysis of humoral and cellular immune responses to internal VSV-proteins following VSV-EBOV immunization. While no pre-existing immunity to the vector was observed, up to 1/3 of subjects showed VSV-specific CTL-responses and antibodies
Detectable vesicular stomatitis virus (VSV)–specific humoral and cellular immune responses following VSV–Ebola virus vaccination in humans
In response to the Ebola virus (EBOV) crisis 2013-2016, a recombinant vesicular stomatitis virus (VSV)-based EBOV vaccine was clinically tested. A single-dose regimen of VSV-EBOV revealed a safe and immunogenic profile and demonstrated clinical efficacy. While EBOV-specific immune responses to this candidate vaccine have previously been investigated, limited human data on immunity to the VSV-vector are available. Within the scope of a Phase I study, we performed a comprehensive longitudinal analysis of humoral and cellular immune responses to internal VSV-proteins following VSV-EBOV immunization. While no pre-existing immunity to the vector was observed, up to 1/3 of subjects showed VSV-specific CTL-responses and antibodies
Detectable Vesicular Stomatitis Virus (VSV)-specific humoral and cellular immune responses following VSV-Ebola virus vaccination in humans
In response to the Ebola virus (EBOV) crisis of 2013-2016, a recombinant vesicular stomatitis virus (VSV)-based EBOV vaccine was clinically tested (NCT02283099). A single-dose regimen of VSV-EBOV revealed a safe and immunogenic profile and demonstrated clinical efficacy. While EBOV-specific immune responses to this candidate vaccine have previously been investigated, limited human data on immunity to the VSV vector are available. Within the scope of a phase 1 study, we performed a comprehensive longitudinal analysis of adaptive immune responses to internal VSV proteins following VSV-EBOV immunization. While no preexisting immunity to the vector was observed, more than one-third of subjects developed VSV-specific cytotoxic T-lymphocyte responses and antibodies