4 research outputs found
Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors
The variation in the expression patterns of the gap genes in the blastoderm of
the fruit fly Drosophila melanogaster reduces over time as a
result of cross regulation between these genes, a fact that we have demonstrated
in an accompanying article in PLoS Biology (see Manu et al.,
doi:10.1371/journal.pbio.1000049). This biologically essential process is an
example of the phenomenon known as canalization. It has been suggested that the
developmental trajectory of a wild-type organism is inherently stable, and that
canalization is a manifestation of this property. Although the role of gap genes
in the canalization process was established by correctly predicting the response
of the system to particular perturbations, the stability of the developmental
trajectory remains to be investigated. For many years, it has been speculated
that stability against perturbations during development can be described by
dynamical systems having attracting sets that drive reductions of volume in
phase space. In this paper, we show that both the reduction in variability of
gap gene expression as well as shifts in the position of posterior gap gene
domains are the result of the actions of attractors in the gap gene dynamical
system. Two biologically distinct dynamical regions exist in the early embryo,
separated by a bifurcation at 53% egg length. In the anterior region,
reduction in variation occurs because of stability induced by point attractors,
while in the posterior, the stability of the developmental trajectory arises
from a one-dimensional attracting manifold. This manifold also controls a
previously characterized anterior shift of posterior region gap domains. Our
analysis shows that the complex phenomena of canalization and pattern formation
in the Drosophila blastoderm can be understood in terms of the
qualitative features of the dynamical system. The result confirms the idea that
attractors are important for developmental stability and shows a richer variety
of dynamical attractors in developmental systems than has been previously
recognized
A High Omega-3 Fatty Acid Diet has Different Effects on Early and Late Stage Myeloid Progenitors
The effects of the polyunsaturated omega-3 (n-3) and omega-6 (n-6) fatty acids (FA) on hematopoiesis are complex in that both FA forms are processed into leukotrienes, eicosanoids, and prostaglandins, which can have independent effects. These FA have antagonistic effects in that n-6 FA prostaglandins tend to be pro-proliferative and pro-inflammatory, while the effects of n-3 FA prostaglandins are the opposite. We have previously shown that diets high in n-3 FA reduce the size of the middle to later stage myeloid progenitor compartment in FVB X sv129 F1hybrid mice. To assay the effects of high n-3 FA diets on earlier stages of myelopoiesis, we fed C57BL/6J mice diets high in n-3 FA or levels of n-3/n-6 FA similar to western diets and assayed the effects on myelopoiesis with flow cytometry and colony forming cell assays.
Results indicate an expansion of the common myeloid progenitor cell compartment in high n-3 FA diets, which does not persist into later stages where the number of progenitor cells is actually lower in high n-3 FA fed animals. Investigations in vitro with the hematopoietic stem cell line EML-clone 1 indicate that cells cultured with eicosapentaenoic acid (n-3 FA) or arachidonic acid (n-6 FA) have no differences in cell viability but that arachidonic acid more rapidly produces progenitors with low levels of the macrophage developmental marker, F4/80