8 research outputs found

    The brainstem in multiple sclerosis: MR identification of tracts and nuclei damage

    No full text
    International audienceObjective: To evaluate the 3D Fast Gray Acquisition T1 Inversion Recovery (FGATIR) sequence for MRI identification of brainstem tracts and nuclei damage in multiple sclerosis (MS) patients. Methods: From april to december 2020, 10 healthy volunteers and 50 patients with remitted-relapsing MS (58% female, mean age 36) underwent MR imaging in the Neuro-imaging department of the C.H.N.O. des Quinze-Vingts, Paris, France. MRI was achieved on a 3 T system (MAGNETOM Skyra) using a 64-channel coil. 3D FGATIR sequence was first performed on healthy volunteers to classify macroscopically identifiable brainstem structures. Then, FGATIR was assessed in MS patients to locate brainstem lesions detected with Proton Density/T2w (PD/T2w) sequence. Results: In healthy volunteers, FGATIR allowed a precise visualization of tracts and nuclei according to their myelin density. Including FGATIR in MR follow-up of MS patients helped to identify structures frequently involved in the inflammatory process. Most damaged tracts were the superior cerebellar peduncle and the transverse fibers of the pons. Most frequently affected nuclei were the vestibular nuclei, the trigeminal tract, the facial nerve and the solitary tract. Conclusion: Combination of FGATIR and PD/T2w sequences opened prospects to define MS elective injury in brainstem tracts and nuclei, with particular lesion features suggesting variations of the inflammatory process within brainstem structures. In a further study, hypersignal quantification and microstructure information should be evaluated using relaxometry and diffusion tractography. Technical improvements would bring novel parameters to train an artificial neural network for accurate automated labeling of MS lesions within the brainstem

    Assessment of left ventricle MR temperature stability in patients in the presence of arrhythmias

    Get PDF
    International audienceBACKGROUND:Magnetic resonance (MR) thermometry allows visualization of lesion formation in real-time during cardiac radiofrequency (RF) ablation. The present study was performed to evaluate the precision of MR thermometry without RF heating in patients exhibiting cardiac arrhythmia in a clinical setting. The evaluation relied on quantification of changes in temperature measurements caused by noise and physiological motion.METHODS:Fourteen patients referred for cardiovascular magnetic resonance imaging underwent an extra sequence to test the temperature mapping stability during free-breathing acquisition. Phase images were acquired using a multi-slice, cardiac-triggered, single-shot echo planar imaging sequence. Temperature maps were calculated and displayed in real-time while the electrocardiogram (ECG) was recorded. The precision of temperature measurement was assessed by measuring the temporal standard deviation and temporal mean of consecutive temperature maps over a period of three minutes. The cardiac cycle was analyzed from ECG recordings to quantify the impact of arrhythmia events on the precision of temperature measurement. Finally, two retrospective strategies were tested to remove acquisition dynamics related either to arrhythmia events or sudden breathing motion.RESULTS:ECG synchronization allowed categorization of inter-beat intervals (RR) into distinct beat morphologies. Five patients were in stable sinus rhythm, while nine patients showed irregular RR intervals due to ectopic beats. An average temporal standard deviation of temperature of 1.6°C was observed in patients under sinus rhythm with a frame rate corresponding to the heart rate of the patient. The temporal standard deviation rose to 2.5°C in patients with arrhythmia. The retrospective rejection strategies increased the temperature precision measurement while maintaining a sufficient frame rate.CONCLUSIONS:Our results indicated that real-time cardiac MR thermometry shows good precision in patients under clinical conditions, even in the presence of arrhythmia. By providing real-time visualization of temperature distribution within the myocardium during RF delivery, MR thermometry could prevent insufficient or excessive heating and thus improve safety and efficacy

    Additional file 1: Figure 3. of Feasibility of real-time MR thermal dose mapping for predicting radiofrequency ablation outcome in the myocardium in vivo

    No full text
    Animation of real-time CMR thermometry during RFA in vivo on a sheep LV (update every 4 dynamic repetitions). Dynamic CMR thermometry was performed in real-time during a RFA (70 W for 40 s, RFA #4 on sheep #3). A) Temperature maps at t = 60 s, corresponding to 40 s of RF delivery, are overlaid on averaged registered magnitude images within a hand-drawn ROI surrounding the heating zone. Heating zone and associated TD (t = 200 s) are zoomed on (B) and (C) in a 30x30 pixels ROI. The value 1 refers to one time the lethal TD threshold equivalent to 43 °C for 240 min. D) Temperature evolution in time in 5x5 pixels of slice #3 centered on the white arrow. Orange line depicts baseline temperature in a single pixel outside heating zone. (GIF 10160 kb
    corecore