5,785 research outputs found

    Interface growth in two dimensions: A Loewner-equation approach

    Full text link
    The problem of Laplacian growth in two dimensions is considered within the Loewner-equation framework. Initially the problem of fingered growth recently discussed by Gubiec and Szymczak [T. Gubiec and P. Szymczak, Phys. Rev. E 77, 041602 (2008)] is revisited and a new exact solution for a three-finger configuration is reported. Then a general class of growth models for an interface growing in the upper-half plane is introduced and the corresponding Loewner equation for the problem is derived. Several examples are given including interfaces with one or more tips as well as multiple growing interfaces. A generalization of our interface growth model in terms of ``Loewner domains,'' where the growth rule is specified by a time evolving measure, is briefly discussed.Comment: To appear in Physical Review

    Mioma Parasita: Forma Rara de Apresentação de uma Entidade Comum

    Get PDF
    Parasitic myomas are a rare form of uterine leiomyomas. Distinction from other abdominal masses may be difficult, due to parasitic leiomyomas' variable anatomic locations and clinical manifestations. We describe the case of a 45 years-old woman, presenting with abdominal pain and a large pelvic mass that turned out to be a parasitic myoma at surgical assessment. Histological analysis confirmed the intraoperative suspicion. We intend to bring awareness to the inclusion of this condition in the differential diagnosis of pelvic masses, especially in women with risk factors for parasitic myomas, such as previous surgery for uterine fibromyomatosis or concomitant uterine myomas.info:eu-repo/semantics/publishedVersio

    Invasion Percolation Between two Sites

    Full text link
    We investigate the process of invasion percolation between two sites (injection and extraction sites) separated by a distance r in two-dimensional lattices of size L. Our results for the non-trapping invasion percolation model indicate that the statistics of the mass of invaded clusters is significantly dependent on the local occupation probability (pressure) Pe at the extraction site. For Pe=0, we show that the mass distribution of invaded clusters P(M) follows a power-law P(M) ~ M^{-\alpha} for intermediate values of the mass M, with an exponent \alpha=1.39. When the local pressure is set to Pe=Pc, where Pc corresponds to the site percolation threshold of the lattice topology, the distribution P(M) still displays a scaling region, but with an exponent \alpha=1.02. This last behavior is consistent with previous results for the cluster statistics in standard percolation. In spite of these discrepancies, the results of our simulations indicate that the fractal dimension of the invaded cluster does not depends significantly on the local pressure Pe and it is consistent with the fractal dimension values reported for standard invasion percolation. Finally, we perform extensive numerical simulations to determine the effect of the lattice borders on the statistics of the invaded clusters and also to characterize the self-organized critical behavior of the invasion percolation process.Comment: 7 pages, 11 figures, submited for PR
    corecore