30 research outputs found

    Methanogenic potential and microbial community of anaerobic batch reactors at different ethylamine/sulfate ratios

    Get PDF
    Methylamine and sulfate are compounds commonly found in wastewaters. This study aimed to determine the methanogenic potential of anaerobic reactors containing these compounds and to correlate it with their microbial communities. Batch experiments were performed at different methylamine/sulfate ratios of 0.71, 1.26 and 2.18 (with respect to mass concentration). Control and experimental runs were inoculated with fragmented granular sludge. The maximum specific methane formation rates were approximately 2.3 mmol CH4 L-1 g TVS-1 day-1 for all conditions containing methylamine, regardless of sulfate addition. At the end of the experiment, total ammonium-N and methane formation were proportional to the initial concentrations of methylamine. In the presence of methylamine and sulfate, Firmicutes (46%), Deferribacteres (13%) and Proteobacteria (12%) were the predominant phyla of the Bacteria domain, while Spirochaetes (40%), Deferribacteres (17%) and Bacteroidetes (16%) predominated in the presence of methylamine only. There was no competition for methylamine between sulfate-reducing bacteria and methanogenic archaea

    Kinetic modeling and microbial assessment by fluorescent in situ hybridization in anaerobic sequencing batch biofilm reactors treating sulfate-rich wastewater

    Get PDF
    This paper reports the results of applying anaerobic sequencing batch biofilm reactors (AnSBBR) for treating sulfate-rich wastewater. The reactor was filled with polyurethane foam matrices or with eucalyptus charcoal, used as the support for biomass attachment. Synthetic wastewater was prepared with two ratios between chemical oxygen demand (COD) and sulfate concentration (COD/SO4(2-)) of 0.4 and 3.2. For a COD/SO4(2-) ratio of 3.2, the AnSBBR performance was influenced by the support material used; the average levels of organic matter removal were 67% and 81% in the reactors filled with polyurethane foam and charcoal, respectively, and both support materials were associated with similar levels of sulfate reduction (above 90%). In both reactors, sulfate-reducing bacteria (SRB) represented more than 65% of the bacterial community. The kinetic model indicated equilibrium between complete- and incomplete-oxidizing SRB in the reactor filled with polyurethane foam and predominantly incomplete-oxidizing SRB in the reactor filled with charcoal. Methanogenic activity seems to have been the determining factor to explain the better performance of the reactor filled with charcoal to remove organic matter at a COD/SO4(2-) ratio of 3.2. For a COD/SO4(2-) ratio of 0.4, low values of sulfate reduction (around 32%) and low reaction rates were observed as a result of the small SRB population (about 20% of the bacterial community). Although the support material did not affect overall performance for this condition, different degradation pathways were observed; incomplete oxidation of organic matter by SRB was the main kinetic pathway and methanogenesis was negligible in both reactors.This work was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Financiadora de Estudos e Projetos (FINEP), Brazil. The authors acknowledge the grants received from FAPESP and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazi

    Evaluation of the anaerobic degradation of black liquor from a Kraft pulp plant with addition of organic co-substrates

    No full text
    The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect

    Isolation of paraclostridium CR4 from sugarcane bagasse and its evaluation in the bioconversion of lignocellulosic feedstock into hydrogen by monitoring cellulase gene expression.

    No full text
    Bioconversion of sugarcane bagasse (SCB) into hydrogen (H2) and organic acids was evaluated using a biomolecular approach to monitor the quantity and expression of the cellulase (Cel) gene. Batch reactors at 37 °C were operated with Paraclostridium sp. (10% v/v) and different substrates (5 g/L): glucose, cellulose and SCB in natura and pre-heat treated and hydrothermally. H2 production from glucose was 162.4 mL via acetic acid (2.9 g/L) and 78.4 mL from cellulose via butyric acid (2.9 g/L). H2 production was higher in hydrothermally pretreated SCB reactors (92.0 mL), heat treated (62.5 mL), when compared to in natura SCB (51.4 mL). Butyric acid (5.8, 4.9 and 4.0 g/L) was the main acid observed in hydrothermally, thermally pretreated, and in natura SCB, respectively. In the reactors with cellulose and reactors with hydrothermally pretreated SCB, the Cel gene copy number 3 and 2 log were higher, respectively, during the stage of maximum H2 production rate, when compared to the initial stage. Differences in Cel gene expression were observed according to the concentration of soluble sugars in the reaction medium. That is, there was no gene expression at the initial phase of the experiment using SCB with 2.6 g/L of sugars and increase of 2.2 log in gene expression during the phases with soluble sugars of <1.4 g/L.Made available in DSpace on 2020-04-03T00:39:44Z (GMT). No. of bitstreams: 1 IsolationParaclostridiumCR4.pdf: 1112797 bytes, checksum: 2a1c039af0b3b90dc48426b3450b6001 (MD5) Previous issue date: 2020bitstream/item/212126/1/IsolationParaclostridiumCR4.pd

    Evaluation of anionic surfactant removal in anaerobic reactor with Fe(III) supplementation

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The objective of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) associated with Fe(III) supplementation using an expanded granular sludge bed (EGSB) reactor. The reactor was inoculated with a granular sludge and fed with synthetic wastewater containing a specific LAS load rate (SLLR) of 1.5 mg gVS(-1) d(-1) (similar to 16.4 mgLAS L-1 influent) and supplied with 7276 mu Mol L-1 of Fe(III). The biomasses from the inoculum and at the end of the EGSB-Fe operation (127 days) were characterized using 16S rRNA Ion Tag sequencing. An increase of 20% in the removal efficiency was observed compared to reactors without Fe(III) supplementation that was reported in the literature, and the LAS removal was approximately 84%. The Fe(III) reduction was dissimilatory (the total iron concentration in the influent and effluent were similar) and reached approximately 64%. The higher Fe(III) reduction and LAS removal were corroborated by the enrichment of genera, such as Shewanella (only EGSB-Fe - 0.5%) and Geobacter (1% - inoculum; 18% - EGSB-Fe). Furthermore, the enrichment of genera that degrade LAS and/or aromatic compounds (3.8% - inoculum; 29.6% - EGSB-Fe of relative abundance) was observed for a total of 20 different genera. (C) 2016 Elsevier Ltd. All rights reserved.The objective of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) associated with Fe(III) supplementation using an expanded granular sludge bed (EGSB) reactor. The reactor was inoculated with a granular sludge and fed with syn1833687693FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2011/06783-1 ; 2014/16426-0This study was funded by the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Process n. 2011/06783-1 and 2014/16426-0

    Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor

    No full text
    An anaerobic fluidized bed reactor was used to assess the degradation of the surfactant linear alkylbenzene sulfonate (LAS). The reactor was inoculated with sludge from an UASB reactor treating swine wastewater and was fed with a synthetic substrate supplemented with LAS. Sand was used as support material for biomass immobilization. The reactor was kept in a controlled temperature chamber (30±1 ºC) and operated with a hydraulic retention time (HRT) of 18 h. The LAS concentration was gradually increased from 8.2±1.3 to 45.8±5.4 mg.L-1. The COD removal was 91%, on average, when the influent COD was 645±49 mg.L-1. The results obtained by chromatographic analysis showed that the reactor removed 93% of the LAS after 270 days of operation

    Degradation of detergent (linear alkylbenzene sulfonate) in an anaerobic stirred sequencing-batch reactor containing granular biomass

    No full text
    This study aimed to determine the efficiency of an anaerobic stirred sequencing-batch reactor containing granular biomass for the degradation of linear alkylbenzene sulfonate (LAS), a surfactant present in household detergent. The bioreactor was monitored for LAS concentrations in the influent, effluent and sludge, pH, chemical oxygen demand, bicarbonate alkalinity, total solids, and volatile solids. The degradation of LAS was found to be higher in the absence of co-substrates (53%) than in their presence (24-37%). Using the polymerase chain reaction and denaturing gradient gel electrophoresis (PCR/DGGE), we identified populations of microorganisms from the Bacteria and Archaea domains. Among the bacteria, we identified uncultivated populations of Arcanobacterium spp. (94%) and Opitutus spp. (96%). Among the Archaea, we identified Methanospirillum spp. (90%), Methanosaeta spp. (98%), and Methanobacterium spp. (96%). The presence of methanogenic microorganisms shows that LAS did not inhibit anaerobic digestion. Sampling at the last stage of reactor operation recovered 61 clones belonging to the domain bacteria. These represented a variety of phyla: 34% shared significant homology with Bacteroidetes, 18% with Proteobacteria, 11% with Verrucomicrobia, 8% with Fibrobacteres, 2% with Acidobacteria, 3% with Chlorobi and Firmicutes, and 1% with Acidobacteres and Chloroflexi. A small fraction of the clones (13%) were not related to any phylum. Published by Elsevier Ltd.FapespCNP
    corecore