166 research outputs found
Approximate Reductions of Rational Dynamical Systems in CLUE
In life sciences, deriving insights from dynamical systems can be challenging due to the large number of state variables involved. To address this, model reduction techniques can be used to project the system onto a lower-dimensional state space. CLUE is a tool that computes exact reductions for rational systems of ordinary differential equations. In this paper, we present an extension of CLUE to include approximate reductions which allow for larger aggregating power at the expense of a bounded error. Additionally, our extension includes new functionalities such as an interface to the model database ODEBase repository and simulation techniques for exploratory analyses
Enhancing Threat Model Validation: A White-Box Approach based on Statistical Model Checking and Process Mining
Our method addresses the challenge of validating threat models by comparing actual behavior with expected behavior. Statistical Model Checking (SMC) is frequently the more appropriate technique for validating models, as it relies on statistically relevant samples to analyze systems with potentially infinite state spaces. In the case of black-box systems, where it is not possible to make complete assumptions about the transition structure, black-box SMC becomes necessary. However, the numeric results of the SMC analysis lack insights on the model’s dynamics, prompting our proposal to enhance SMC analysis by incorporating visual information on the behavior that led to a given estimation. Our method improves traditional model validation using SMC by enriching its analyses with Process Mining (PM) techniques. Our approach takes simulated event logs as inputs, and uses PM techniques to reconstruct an observed model to be compared with the graphical representation of the original model, obtaining a diff model highlighting discrepancies among expected and actual behavior. This allows the modeler to address unexpected or missing behaviors. In this paper we further customize the diff model for aspects specific to threat model analysis, incorporating features such as new colored edges to symbolize an attacker’s initial assets and a automatic fix for simple classes of modeling errors which generate unexpected deadlocks in the simulated model. Our approach offers an effective and scalable solution for threat model validation, contributing to the evolving landscape of risk modeling and analysis
Adaptation is a game
Control data variants of game models such as Interface Automata are suitable for the design and analysis of self-adaptive systems
Formal lumping of polynomial differential equations through approximate equivalences
It is well known that exact notions of model abstraction and reduction for dynamical systems may not be robust enough in practice because they are highly sensitive to the specific choice of parameters. In this paper we consider this problem for nonlinear ordinary differential equations (ODEs) with polynomial derivatives. We introduce a model reduction technique based on approximate differential equivalence, i.e., a partition of the set of ODE variables that performs an aggregation when the variables are governed by nearby derivatives. We develop algorithms to (i) compute the largest approximate differential equivalence; (ii) construct an approximately reduced model from the original one via an appropriate perturbation of the coefficients of the polynomials; and (iii) provide a formal certificate on the quality of the approximation as an error bound, computed as an over-approximation of the reachable set of the reduced model. Finally, we apply approximate differential equivalences to case studies on electric circuits, biological models, and polymerization reaction networks
Lumpability for Uncertain Continuous-Time Markov Chains
The assumption of perfect knowledge of rate parameters in continuous-time Markov chains (CTMCs) is undermined when confronted with reality, where they may be uncertain due to lack of information or because of measurement noise. In this paper we consider uncertain CTMCs, where rates are assumed to vary non-deterministically with time from bounded continuous intervals. This leads to a semantics which associates each state with the reachable set of its probability under all possible choices of the uncertain rates. We develop a notion of lumpability which identifies a partition of states where each block preserves the reachable set of the sum of its probabilities, essentially lifting the well-known CTMC ordinary lumpability to the uncertain setting. We proceed with this analogy with two further contributions: a logical characterization of uncertain CTMC lumping in terms of continuous stochastic logic; and a polynomial time and space algorithm for the minimization of uncertain CTMCs by partition refinement, using the CTMC lumping algorithm as an inner step. As a case study, we show that the minimizations in a substantial number of CTMC models reported in the literature are robust with respect to uncertainties around their original, fixed, rate values
Syntactic Markovian Bisimulation for Chemical Reaction Networks
In chemical reaction networks (CRNs) with stochastic semantics based on
continuous-time Markov chains (CTMCs), the typically large populations of
species cause combinatorially large state spaces. This makes the analysis very
difficult in practice and represents the major bottleneck for the applicability
of minimization techniques based, for instance, on lumpability. In this paper
we present syntactic Markovian bisimulation (SMB), a notion of bisimulation
developed in the Larsen-Skou style of probabilistic bisimulation, defined over
the structure of a CRN rather than over its underlying CTMC. SMB identifies a
lumpable partition of the CTMC state space a priori, in the sense that it is an
equivalence relation over species implying that two CTMC states are lumpable
when they are invariant with respect to the total population of species within
the same equivalence class. We develop an efficient partition-refinement
algorithm which computes the largest SMB of a CRN in polynomial time in the
number of species and reactions. We also provide an algorithm for obtaining a
quotient network from an SMB that induces the lumped CTMC directly, thus
avoiding the generation of the state space of the original CRN altogether. In
practice, we show that SMB allows significant reductions in a number of models
from the literature. Finally, we study SMB with respect to the deterministic
semantics of CRNs based on ordinary differential equations (ODEs), where each
equation gives the time-course evolution of the concentration of a species. SMB
implies forward CRN bisimulation, a recently developed behavioral notion of
equivalence for the ODE semantics, in an analogous sense: it yields a smaller
ODE system that keeps track of the sums of the solutions for equivalent
species.Comment: Extended version (with proofs), of the corresponding paper published
at KimFest 2017 (http://kimfest.cs.aau.dk/
Characterizing genomic alterations in cancer by complementary functional associations.
Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
Computational Cancer Biology: An Evolutionary Perspective
ISSN:1553-734XISSN:1553-735
The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets
Recommended from our members
Computational solutions for omics data
High-throughput experimental technologies are generating increasingly massive and complex genomic data sets. The sheer enormity and heterogeneity of these data threaten to make the arising problems computationally infeasible. Fortunately, powerful algorithmic techniques lead to software that can answer important biomedical questions in practice. In this Review, we sample the algorithmic landscape, focusing on state-of-the-art techniques, the understanding of which will aid the bench biologist in analysing omics data. We spotlight specific examples that have facilitated and enriched analyses of sequence, transcriptomic and network data sets.National Institutes of Health (U.S.) (Grant GM081871
- …