3 research outputs found

    Development of a multiplex DNA-based traceability tool for crop plant materials

    Get PDF
    The authenticity of food is of increasing importance for producers, retailers and consumers. All groups benefit from the correct labelling of the contents of food products. Producers and retailers want to guarantee the origin of their products and check for adulteration with cheaper or inferior ingredients. Consumers are also more demanding about the origin of their food for various socioeconomic reasons. In contrast to this increasing demand, correct labelling has become much more complex because of global transportation networks of raw materials and processed food products. Within the European integrated research project ‘Tracing the origin of food’ (TRACE), a DNA-based multiplex detection tool was developed—the padlock probe ligation and microarray detection (PPLMD) tool. In this paper, this method is extended to a 15-plex traceability tool with a focus on products of commercial importance such as the emmer wheat Farro della Garfagnana (FdG) and Basmati rice. The specificity of 14 plant-related padlock probes was determined and initially validated in mixtures comprising seven or nine plant species/varieties. One nucleotide difference in target sequence was sufficient for the distinction between the presence or absence of a specific target. At least 5% FdG or Basmati rice was detected in mixtures with cheaper bread wheat or non-fragrant rice, respectively. The results suggested that even lower levels of (un-)intentional adulteration could be detected. PPLMD has been shown to be a useful tool for the detection of fraudulent/intentional admixtures in premium foods and is ready for the monitoring of correct labelling of premium foods worldwide

    Towards a Multiplex Cereal Traceability Tool Using Padlock Probe Ligation on Genomic DNA

    No full text
    Current EU regulations on the protection of products with certain characteristics (geographical indications and designations of origin) aim to ensure fair competition for producers and increased consumers' trust. Within the European integrated research project TRACE analytical methods are being developed to allow the maintenance of specific regulations for PGIs (products of protected geographical indication) and PDOs (products of designated origin). An example within the project is the PGI wheat variety Farro della Garfagnana. Aim of the research was to develop amethod to establish the purity of Farro della Garfagnana DNA in in complex cereal mixtures. The combined approach of padlock probe ligation and multiplex microarray detection can identify possible admixtures. One undesired 'contaminant' for Farro della Garfagnana is common bread wheat (Triticum aestivum), containing the BBAuAuDD genome. Since Farro harbours the BBAuAu genome, absence of the D-genome rules out the presence of bread wheat. The current detection limit of this multimethod is at least 2.5 % bread wheat in Farro.JRC.DDG.D.2-Reference material
    corecore