8,480 research outputs found
Radiative flux measurements in the stratosphere
The objective is to determine how the stratospheric tropospheric exchange of water vapor is affected by the interaction of solar (visible) and planetary (infrared) radiation with tropical cumulonimbus anvils. This research involves field measurements from the ER-2 aircraft as well as radiative transfer modelling to determine heating and cooling rates and profiles that directly affect the exchange between the troposphere and the stratosphere
Planetary astronomy and supporting laboratory research
The aim was to obtain form laboratory measurements the molecular parameters needed to interpret observations of planetary and cometary spectra, and to develop the analytical and computational techniques to interpret the observed spectra in terms of planetary atmospheres including solids and cometary ices. The gas phase molecular parameters measured include the intensities and half-widths of vib-rotational lines, total intensities of absorption bands, temperature dependencies, and absorption and pressure parameters in random-band models of absorption bands. Computation of line shapes of H2 quadrupole lines from quantum mechanical first principles for comparison with laboratory data and use in modeling of planetary atmospheres was accomplished. The solid phase measurements include band profile and quantitative intensity measurements and dependence on composition as well as thermal and photolytic processing which mimics the particular astrophysical environments. Work on GeH4, PH3, has made significant progress
On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation
Biological and robotic grasp and manipulation are undeniably similar at the
level of mechanical task performance. However, their underlying fundamental
biological vs. engineering mechanisms are, by definition, dramatically
different and can even be antithetical. Even our approach to each is
diametrically opposite: inductive science for the study of biological systems
vs. engineering synthesis for the design and construction of robotic systems.
The past 20 years have seen several conceptual advances in both fields and the
quest to unify them. Chief among them is the reluctant recognition that their
underlying fundamental mechanisms may actually share limited common ground,
while exhibiting many fundamental differences. This recognition is particularly
liberating because it allows us to resolve and move beyond multiple paradoxes
and contradictions that arose from the initial reasonable assumption of a large
common ground. Here, we begin by introducing the perspective of neuromechanics,
which emphasizes that real-world behavior emerges from the intimate
interactions among the physical structure of the system, the mechanical
requirements of a task, the feasible neural control actions to produce it, and
the ability of the neuromuscular system to adapt through interactions with the
environment. This allows us to articulate a succinct overview of a few salient
conceptual paradoxes and contradictions regarding under-determined vs.
over-determined mechanics, under- vs. over-actuated control, prescribed vs.
emergent function, learning vs. implementation vs. adaptation, prescriptive vs.
descriptive synergies, and optimal vs. habitual performance. We conclude by
presenting open questions and suggesting directions for future research. We
hope this frank assessment of the state-of-the-art will encourage and guide
these communities to continue to interact and make progress in these important
areas
Propagation of localized surface plasmons in sets of metallic nanocylinders at the exit of subwavelength slits
We analyze, by means of numerical simulations, transmission enhancements
through sub- wavelength slits due to the presence of sets of plasmonic
nanocylinders, placed near the exit of these apertures. Further, we extend this
study to photonic crystals of dipolar plasmonic particles in front of an array
of extraordinarily transmitting slits practiced in a metallic slab.Comment: 20 pages, 9 figures. Submitted to Journal of Nanophotonic
A physical model suggests that hip-localized balance sense in birds improves state estimation in perching: implications for bipedal robots
In addition to a vestibular system, birds uniquely have a balance-sensing organ within the pelvis, called the lumbosacral organ (LSO). The LSO is well developed in terrestrial birds, possibly to facilitate balance control in perching and terrestrial locomotion. No previous studies have quantified the functional benefits of the LSO for balance. We suggest two main benefits of hip-localized balance sense: reduced sensorimotor delay and improved estimation of foot-ground acceleration. We used system identification to test the hypothesis that hip-localized balance sense improves estimates of foot acceleration compared to a head-localized sense, due to closer proximity to the feet. We built a physical model of a standing guinea fowl perched on a platform, and used 3D accelerometers at the hip and head to replicate balance sense by the LSO and vestibular systems. The horizontal platform was attached to the end effector of a 6 DOF robotic arm, allowing us to apply perturbations to the platform analogous to motions of a compliant branch. We also compared state estimation between models with low and high neck stiffness. Cross-correlations revealed that foot-to-hip sensing delays were shorter than foot-to-head, as expected. We used multi-variable output error state-space (MOESP) system identification to estimate foot-ground acceleration as a function of hip- and head-localized sensing, individually and combined. Hip-localized sensors alone provided the best state estimates, which were not improved when fused with head-localized sensors. However, estimates from head-localized sensors improved with higher neck stiffness. Our findings support the hypothesis that hip-localized balance sense improves the speed and accuracy of foot state estimation compared to head-localized sense. The findings also suggest a role of neck muscles for active sensing for balance control: increased neck stiffness through muscle co-contraction can improve the utility of vestibular signals. Our engineering approach provides, to our knowledge, the first quantitative evidence for functional benefits of the LSO balance sense in birds. The findings support notions of control modularity in birds, with preferential vestibular sense for head stability and gaze, and LSO for body balance control,respectively. The findings also suggest advantages for distributed and active sensing for agile locomotion in compliant bipedal robots
Electrocrystallization of chromium from molten salts
Imperial Users onl
- …