23 research outputs found

    Lipid-based systems loaded with PbS nanocrystals: near infrared emitting trackable nanovectors

    Get PDF
    Hydrophobic PbS nanocrystals (NCs) emitting in the near infrared spectral region were encapsulated in the core of micelles and in the bilayer of liposomes, respectively, to form polyethylene glycol (PEG)-grafted phospholipids. The phospholipid-based functionalization process of PbS NCs required the replacement of the pristine capping ligand at the NC surface with thiol molecules. The procedures carried out for two systems, micelles and liposomes, using PEG-modified phospholipids were carefully monitored by optical, morphological and structural investigations. The hydrodynamic diameter and the colloidal stability of both micelles and liposomes loaded with PbS NCs were evaluated using Dynamic Light Scattering (DLS) and z-potential experiments, and both were satisfactorily stable in physiological media. The cytotoxicity of the resulting PbS NC-loaded nanovectors was assessed by the in vitro investigation on Saos-2 cells, indicating that the toxicity of the PbS NC loaded liposomes was lower than that of the micelles with the same NC cargo, which is reasonable due to the different overall composition of the two prepared nanocarriers. Finally, the cellular uptake in the Saos-2 cells of both the NC containing systems was evaluated by means of confocal microscopy studies by exploiting a visible fluorescent phospholipid and demonstrating the ability of both luminescent nanovectors to be internalized. The obtained results show the great potential of the prepared emitting nanoprobes for imaging applications in the second biological window

    De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici

    Get PDF
    Background: Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production. Results: We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host–pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI). Conclusions: The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits

    Cytotoxicity Study on Luminescent Nanocrystals Containing Phospholipid Micelles in Primary Cultures of Rat Astrocytes.

    No full text
    Luminescent colloidal nanocrystals (NCs) are emerging as a new tool in neuroscience field, representing superior optical probes for cellular imaging and medical diagnosis of neurological disorders with respect to organic fluorophores. However, only a limited number of studies have, so far, explored NC applications in primary neurons, glia and related cells. Indeed astrocytes, as resident cells in the central nervous system (CNS), play an important pathogenic role in several neurodegenerative and neuroinflammatory diseases, therefore enhanced imaging tools for their thorough investigation are strongly amenable. Here, a comprehensive and systematic study on the in vitro toxicological effect of core-shell type luminescent CdSe@ZnS NCs incorporated in polyethylene glycol (PEG) terminated phospholipid micelles on primary cultures of rat astrocytes was carried out. Cytotoxicity response of empty micelles based on PEG modified phospholipids was compared to that of their NC containing counterpart, in order to investigate the effect on cell viability of both inorganic NCs and micelles protecting NC surface. Furthermore, since the surface charge and chemistry influence cell interaction and toxicity, effect of two different functional groups terminating PEG-modified phospholipid micelles, namely amine and carboxyl group, respectively, was evaluated against bare micelles, showing that carboxyl group was less toxic. The ability of PEG-lipid micelles to be internalized into the cells was qualitatively and quantitatively assessed by fluorescence microscopy and photoluminescence (PL) assay. The results of the experiments clearly demonstrate that, once incorporated into the micelles, a low, not toxic, concentration of NCs is sufficient to be distinctly detected within cells. The overall study provides essential indications to define the optimal experimental conditions to effectively and profitably use the proposed luminescent colloidal NCs as optical probe for future in vivo experiments

    Highly selective luminescent nanostructures for mitochondrial imaging and targeting

    No full text
    Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino functionalized luminescent silica coated QD nanoparticles (QD@SiO2 NPs) provides a versatile nanoplatform to anchor a potent and selective TSPO ligand, characterized by a 2-phenyl-imidazo[1,2-a] pyridine acetamide structure along with a derivatizable carboxylic end group, useful to conjugate the TSPO ligand and achieve TSPO-QD@SiO2 NPs by means of a covalent amide bond. The colloidal stability and optical properties of the proposed nanomaterials are comprehensively investigated and their potential as mitochondrial imaging agents is fully assessed. Subcellular fractionation, together with confocal laser scanning fluorescence microscopy and co-localization analysis of targeted TSPO-QD@SiO2 NPs in C6 glioma cells overexpressing the TSPO, proves the great potential of these multifunctional nanosystems as in vitro selective mitochondrial imaging agents

    Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma

    No full text
    Currently, sorafenib is the only systemic therapy capable of increasing overall survival of hepatocellular carcinoma patients. Unfortunately, its side effects, particularly its overall toxicity, limit the therapeutic response that can be achieved. Superparamagnetic iron oxide nanoparticles (SPIONs) are very attractive for drug delivery because they can be targeted to specific sites in the body through application of a magnetic field, thus improving intratumoral accumulation and reducing adverse effects. Here, nanoformulations based on polyethylene glycol modified phospholipid micelles, loaded with both SPIONs and sorafenib, were successfully prepared and thoroughly investigated by complementary techniques. This nanovector system provided effective drug delivery, had an average hydrodynamic diameter of about 125 nm, had good stability in aqueous medium, and allowed controlled drug loading. Magnetic analysis allowed accurate determination of the amount of SPIONs embedded in each micelle. An in vitro system was designed to test whether the SPION micelles can be efficiently held using a magnetic field under typical flow conditions found in the human liver. Human hepatocellular carcinoma (HepG2) cells were selected as an in vitro system to evaluate tumor cell targeting efficacy of the superparamagnetic micelles loaded with sorafenib. These experiments demonstrated that this delivery platform is able to enhance sorafenib\u2019s antitumor effectiveness by magnetic targeting. The magnetic nanovectors described here represent promising candidates for targeting specific hepatic tumor sites, where selective release of sorafenib can improve its efficacy and safety profile

    Integrin-targeting with peptide-bioconjugated semiconductor-magnetic nanocrystalline heterostructures

    No full text
    Binary asymmetric nanocrystals (BNCs), composed of a photoactive TiO2 nanorod joined with a superparamagnetic gamma-Fe2O3 spherical domain, were embedded in polyethylene glycol modified phospholipid micelle and successfully bioconjugated to a suitably designed peptide containing an RGD motif. BNCs represent a relevant multifunctional nanomaterial, owing to the coexistence of two distinct domains in one particle, characterized by high photoactivity and magnetic properties, that is particularly suited for use as a phototherapy and hyperthermia agent as well as a magnetic probe in biological imaging. We selected the RGD motif in order to target integrin expressed on activated endothelial cells and several types of cancer cells. The prepared RGD-peptide/BNC conjugates, comprehensively monitored by using complementary optical and structural techniques, demonstrated a high stability and uniform dispersibility in biological media. The cytotoxicity of the RGD-peptide/BNC conjugates was studied in vitro. The cellular uptake of RGD-peptide conjugates in the cells, assessed by means of two distinct approaches, namely confocal microscopy analysis and emission spectroscopy determination in cell lysates, displayed selectivity of the RGD-peptide-BNC conjugate for the alpha v beta 3 integrin. These RGD-peptide-BNC conjugates have a high potential for theranostic treatment of cancer.Binary asymmetric nanocrystals (BNCs), composed of a photoactive TiO2 nanorod joined with a superparamagnetic γ-Fe2O3 spherical domain, were embedded in polyethylene glycol modified phospholipid micelle and successfully bioconjugated to a suitably designed peptide containing an RGD motif. BNCs represent a relevant multifunctional nanomaterial, owing to the coexistence of two distinct domains in one particle, characterized by high photoactivity and magnetic properties, that is particularly suited for use as a phototherapy and hyperthermia agent as well as a magnetic probe in biological imaging. We selected the RGD motif in order to target integrin expressed on activated endothelial cells and several types of cancer cells. The prepared RGD-peptide/BNC conjugates, comprehensively monitored by using complementary optical and structural techniques, demonstrated a high stability and uniform dispersibility in biological media. The cytotoxicity of the RGD-peptide/BNC conjugates was studied in vitro. The cellular uptake of RGD-peptide conjugates in the cells, assessed by means of two distinct approaches, namely confocal microscopy analysis and emission spectroscopy determination in cell lysates, displayed selectivity of the RGD-peptide-BNC conjugate for the αvβ3 integrin. These RGD-peptide-BNC conjugates have a high potential for theranostic treatment of cancer. [Figure not available: see fulltext.

    Preparation and characterization of <i>‘as synthesized’</i> CdSe@ZnS NCs.

    No full text
    <p>TEM (A) and HRTEM micrographs (B), absorption (E, black line) and PL (E, red line) spectra of organic capped CdSe@ZnS NCs dispersed in CHCl<sub>3</sub>. Picture of the sample under visible (C) and UV (D) light illumination.</p

    Concentration of emitting CdSe@ZnS NCs in cell lysates.

    No full text
    <p>Confluent astrocytes plate in 6 well plates, were treated for 1h with NC/MIC, NC/MIC-COOH or NC/MIC-NH<sub>2</sub>, at the reported concentrations of phospholipids and NCs. Negative control, obtained from untreated astrocytes in serum free DMEM, was set at zero. After incubation, the concentration of fluorescence CdSe@ZnS NCs in cell lysates was determined by spectrophotometric assay as reported in experimental section. The histograms represent the NC concentration in cell lysates, expressed as mean values ±SD of three experiments performed on different cell populations.</p

    Effect of NCs, MIC-COOH and NC/MIC-COOH on the production of ROS in astrocytes.

    No full text
    <p>PL spectrum of the lysates from astrocytes treated only with DCFH-DA (CTRL)(A); pretreated with DCFH-DA and then treated with: 100 μM of H<sub>2</sub>O<sub>2</sub> ((B); MIC-COOH at lipid concentration of 5 μM (C) and 100μM (D); <i>‘as synthesized’</i> NCs at concentration of 1.8 nM (E) and 35 nM (F); NC/MIC-COOH at lipid concentration of 5 μM and NC concentration of 1.8 nM (G) or NC/MIC-COOH at lipid concentration of 100 μM and NC concentration of 35 nM (H). The PL peak centred at 525 nm is ascribable to DCF, while the peak centred at 605 nm is due to luminescent CdSe@ZnS NCs. Histograms represent ROS production, reported as relative percentage of PL intensity in comparison with the negative control (I). Data are mean values ± SD of three separate experiments performed on different cell populations (one-way ANOVA followed by Student-Newman-Keuls; *p < 0.05 and **p < 0.001).</p

    Evaluation of cellular uptake of NC/MIC-COOH by confocal microscopy.

    No full text
    <p>Confocal differential interface contrast and fluorescence micrographs of fixed astrocytes. Cells images after 1 h of incubation time with NC/MIC-COOH at NC concentration of 0.2 nM. Cell images in the differential interference contrast (Panel A), blue (Panel C) and red (Panel D) detection channel. Overlay of blue and red fluorescence detection channels with (Panel B) and without differential interface contrast (Panel E). Scale bar 25 μm.</p
    corecore