1,768 research outputs found

    A hierarchy of bound states in the 1D ferromagnetic Ising chain CoNb2_2O6_6 investigated by high resolution time-domain terahertz spectroscopy

    Full text link
    Kink bound states in the one dimensional ferromagnetic Ising chain compound CoNb2_2O6_6 have been studied using high resolution time-domain terahertz spectroscopy in zero applied magnetic field. When magnetic order develops at low temperature, nine bound states of kinks become visible. Their energies can be modeled exceedingly well by the Airy function solutions to a 1D Schr\"odinger equation with a linear confining potential. This sequence of bound states terminates at a threshold energy near two times the energy of the lowest bound state. Above this energy scale we observe a broad feature consistent with the onset of the two particle continuum. At energies just below this threshold we observe a prominent excitation that we interpret as a novel bound state of bound states -- two pairs of kinks on neighboring chains

    Roles of Bond Alternation in Magnetic Phase Diagram of RMnO3

    Full text link
    In order to investigate nature of the antiferromagnetic structures in perovskite RMnO3, we study a Heisenberg J1-J2 model with bond alternation using analytical and numerical approaches. The magnetic phase diagram which includes incommensurate spiral states and commensurate collinear states is reproduced. We discuss that the magnetic structure with up-up-down-down spin configuration (E-type structure) and the ferroelectricity emerge cooperatively to stabilize this phase. Magnetoelastic couplings are crucial to understand the magnetic and electric phase diagram of RMnO3.Comment: 5 pages, 6 figure

    PUK13 LOWER MENTAL HEALTH SCORES MEASURED USING THE SF-36 HEALTH SURVEY IS AN INDEPENDENT PREDICTOR OF MORTALITY IN YOUNGER PATIENTS RENAL REPLACEMENT THERAPY

    Get PDF

    Electric-dipole active two-magnon excitation in {\textit{ab}} spiral spin phase of a ferroelectric magnet Gd0.7_{\textbf{0.7}}Tb0.3_{\textbf{0.3}}MnO3_{\textbf 3}

    Full text link
    A broad continuum-like spin excitation (1--10 meV) with a peak structure around 2.4 meV has been observed in the ferroelectric abab spiral spin phase of Gd0.7_{0.7}Tb0.3_{0.3}MnO3_3 by using terahertz (THz) time-domain spectroscopy. Based on a complete set of light-polarization measurements, we identify the spin excitation active for the light EE vector only along the a-axis, which grows in intensity with lowering temperature even from above the magnetic ordering temperature but disappears upon the transition to the AA-type antiferromagnetic phase. Such an electric-dipole active spin excitation as observed at THz frequencies can be ascribed to the two-magnon excitation in terms of the unique polarization selection rule in a variety of the magnetically ordered phases.Comment: 11 pages including 3 figure

    Nanospintronics with carbon nanotubes

    Full text link
    One of the actual challenges of spintronics is the realization of a spin-transistor allowing to control spin transport through an electrostatic gate. In this review, we report on different experiments which demonstrate a gate control of spin transport in a carbon nanotube connected to ferromagnetic leads. We also discuss some theoretical approaches which can be used to analyze spin transport in these systems. We emphasize the roles of the gate-tunable quasi-bound states inside the nanotube and the coherent spin-dependent scattering at the interfaces between the nanotube and its ferromagnetic contacts.Comment: 35 pages, 15 figures, some figures in gi
    • …
    corecore