10 research outputs found

    Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG

    Get PDF
    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant’s individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception

    Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception

    No full text
    The human brain's executive systems have a vital role in deciding and selecting among actions. Selection among alternatives also occurs in the perceptual domain; for instance, when perception switches between interpretations during perceptual bistability. Whether executive systems also underlie this functionality remains debated, with known fronto-parietal concomitants of perceptual switches being variously interpreted as reflecting the switches' cause or as reflecting their consequences. We developed a procedure in which the two eyes receive different inputs and perception demonstrably switches between these inputs, yet the switches themselves are so inconspicuous as to become unreportable, minimizing their executive consequences. Fronto-parietal fMRI BOLD responses that accompanied perceptual switches were similarly minimized in this procedure, indicating that these reflect the switches' consequences rather than their cause. We conclude that perceptual switches do not always rely on executive brain areas and that processes responsible for selection among alternatives may operate outside the brain's executive systems
    corecore