21 research outputs found

    The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family.

    No full text
    Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (P e -6 cm/s) and will require influx transport to penetrate the blood-brain barrier and other physiological barriers. We then studied the uptake of amisulpride and sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier

    Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals

    Full text link
    Crystalline silicon is the most important semiconductor material in the electronics industry. However, silicon has poor optical properties because of its indirect bandgap, which prevents the efficient emission and absorption of light. The energy structure of silicon can be manipulated through quantum confinement effects, and the excitonic emission from silicon nanocrystals increases in intensity and shifts to shorter wavelengths (a blueshift) as the size of the nanocrystals is reduced. Here we report experimental evidence for a short-lived visible band in the photoluminescence spectrum of silicon nanocrystals that increases in intensity and shifts to longer wavelengths (a redshift) with smaller nanocrystal sizes. This higher intensity indicates an increased quantum efficiency, which for 2.5-nm-diameter nanocrystals is enhanced by three orders of magnitude compared to bulk silicon. We assign this band to the radiative recombination of non-equilibrium electron-hole pairs in a process that does not involve phonons. © 2010 Macmillan Publishers Limited. All rights reserved
    corecore