20 research outputs found

    Monitoring of Regulatory T Cell Frequencies and Expression of CTLA-4 on T Cells, before and after DC Vaccination, Can Predict Survival in GBM Patients

    Get PDF
    PURPOSE: Dendritic cell (DC) vaccines have recently emerged as an innovative therapeutic option for glioblastoma patients. To identify novel surrogates of anti-tumor immune responsiveness, we studied the dynamic expression of activation and inhibitory markers on peripheral blood lymphocyte (PBL) subsets in glioblastoma patients treated with DC vaccination at UCLA. EXPERIMENTAL DESIGN: Pre-treatment and post-treatment PBL from 24 patients enrolled in two Phase I clinical trials of dendritic cell immunotherapy were stained and analyzed using flow cytometry. A univariate Cox proportional hazards model was utilized to investigate the association between continuous immune monitoring variables and survival. Finally, the immune monitoring variables were dichotomized and a recursive partitioning survival tree was built to obtain cut-off values predictive of survival. RESULTS: The change in regulatory T cell (CD3(+)CD4(+)CD25(+)CD127(low)) frequency in PBL was significantly associated with survival (p = 0.0228; hazard ratio = 3.623) after DC vaccination. Furthermore, the dynamic expression of the negative co-stimulatory molecule, CTLA-4, was also significantly associated with survival on CD3(+)CD4(+) T cells (p = 0.0191; hazard ratio = 2.840) and CD3(+)CD8(+) T cells (p = 0.0273; hazard ratio = 2.690), while that of activation markers (CD25, CD69) was not. Finally, a recursive partitioning tree algorithm was utilized to dichotomize the post/pre fold change immune monitoring variables. The resultant cut-off values from these immune monitoring variables could effectively segregate these patients into groups with significantly different overall survival curves. CONCLUSIONS: Our results suggest that monitoring the change in regulatory T cell frequencies and dynamic expression of the negative co-stimulatory molecules on peripheral blood T cells, before and after DC vaccination, may predict survival. The cut-off point generated from these data can be utilized in future prospective immunotherapy trials to further evaluate its predictive validity

    Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis

    No full text
    We discovered that Enterococcus faecium (E. faecium), a ubiquitous commensal bacterium, and its secreted peptidoglycan hydrolase (SagA) were sufficient to enhance intestinal barrier function and pathogen tolerance, but the precise biochemical mechanism was unknown. Here we show E. faecium has unique peptidoglycan composition and remodeling activity through SagA, which generates smaller muropeptides that more effectively activates nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mammalian cells. Our structural and biochemical studies show that SagA is a NlpC/p60-endopeptidase that preferentially hydrolyzes crosslinked Lys-type peptidoglycan fragments. SagA secretion and NlpC/p60-endopeptidase activity was required for enhancing probiotic bacteria activity against Clostridium difficile pathogenesis in vivo. Our results demonstrate that the peptidoglycan composition and hydrolase activity of specific microbiota species can activate host immune pathways and enhance tolerance to pathogens

    Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis

    No full text
    We discovered that Enterococcus faecium (E. faecium), a ubiquitous commensal bacterium, and its secreted peptidoglycan hydrolase (SagA) were sufficient to enhance intestinal barrier function and pathogen tolerance, but the precise biochemical mechanism was unknown. Here we show E. faecium has unique peptidoglycan composition and remodeling activity through SagA, which generates smaller muropeptides that more effectively activates nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mammalian cells. Our structural and biochemical studies show that SagA is a NlpC/p60-endopeptidase that preferentially hydrolyzes crosslinked Lys-type peptidoglycan fragments. SagA secretion and NlpC/p60-endopeptidase activity was required for enhancing probiotic bacteria activity against Clostridium difficile pathogenesis in vivo. Our results demonstrate that the peptidoglycan composition and hydrolase activity of specific microbiota species can activate host immune pathways and enhance tolerance to pathogens

    Preclinical vaccines against mammary carcinoma.

    Get PDF
    Vaccines against human breast cancer are an unfulfilled promise. Despite decades of promising preclinical and clinical research, no vaccine is currently available for breast cancer patients. Preclinical research has much to do with this failure, as early mouse models of mammary carcinoma did not mirror the molecular, cellular, antigenic and immunological features of human breast cancer. The advent of HER-2 transgenic mice gave impulse to a new generation of cell and DNA vaccines against mammary carcinoma, that in turn led to the definition of significant antigenic (oncoantigens) and cellular (cancer-initiating cells, preneoplastic lesions, incipient metastases) targets. Future preclinical developments will include the discovery of novel oncoantigens in HER-2-negative mammary carcinoma and the targeting of activated HER-2 molecular variants. Translation to clinically effective vaccines will be fostered not only by new preclinical model systems, but also by the possibility to conduct veterinary vaccination trials in companion animals
    corecore