24 research outputs found

    Extreme sensitivity in Snowball Earth formation to mountains on PaleoProterozoic supercontinents

    Get PDF
    During the PaleoProterozoic 2.45 to 2.2 billion years ago, several glaciations may have produced Snowball Earths. These glacial cycles occurred during large environmental change when atmospheric oxygen was increasing, a supercontinent was assembled from numerous landmasses, and collisions between these landmasses formed mountain ranges. Despite uncertainties in the composition of the atmosphere and reconstruction of the landmasses, paleoclimate model simulations can test the sensitivity of the climate to producing a Snowball Earth. Here we present a series of simulations that vary the atmospheric methane concentration and latitudes of west–east-oriented mountain ranges on an idealised supercontinent. For a given methane concentration, the latitudes of mountains control whether a Snowball Earth forms or not. Significantly, mountains in middle latitudes inhibited Snowball Earth formation, and mountains in low latitudes promoted Snowball Earth formation, with the supercontinent with mountains at ±30° being most conducive to forming a Snowball Earth because of reduced albedo at low latitudes. We propose that the extreme sensitivity of a Snowball Earth to reconstructions of the paleogeography and paleoatmospheric composition may explain the observed glaciations, demonstrating the importance of high-quality reconstructions to improved understanding of this early period in Earth’s history

    The Palaeoproterozoic perturbation of the Global Carbon Cycle : the Lomagundi-Jatuli Isotopic Event

    Get PDF
    On Earth, carbon cycles through the land, ocean, atmosphere, living and dead biomass and the planet’s interior. The global carbon cycle can be divided into the tectonically driven geological cycle and the biological/physicochemical cycles. The former operates over millions of years, whereas the latter operate over much shorter time scales (days to thousands of years). Within the geological cycle, atmospheric carbon dioxide concentration is controlled by the balance between weathering, biological drawdown, size of sedimentary reservoir, subduction, metamorphism and volcanism over time periods of hundreds of millions of year

    Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis

    No full text
    All known forms of life require phosphorus, and biological processes strongly influence the global phosphorus cycle. Although the record of life on Earth extends back to 3.8 billion years ago and the advent of biological phosphate processing can be tracked to at least 3.5 billion years ago,the earliest known P-rich deposits appeared only 2 billion years ago. The onset of P deposition has been attributed to the rise of atmospheric oxygen 2.4–2.3 billion years ago and the related profound biogeochemical shifts which increased the riverine input of phosphate to the ocean and boosted biological productivity and phosphogenesis. However, the P-rich deposits post-date the rise of oxygen by about 300 million years. Here we use microfabric, trace element and carbon isotope analyses to assess the environmental setting and redox conditions of the 2-billion-year-old P-rich deposits of the vent- or seep-influenced Zaonega Formation, northwest Russia. We identify phosphatized microorganism fossils that resemble modern methanotrophic archaea and sulphur-oxidizing bacteria, analogous to organisms found in modern seep settings and upwelling zones with a sharp redoxcline. We therefore propose that the P-rich deposits in the Zaonega Formation were formed by phosphogenesis mediated by sulphur bacteria, similar to modern site, and by the precipitation of calcium phosphate minerals on microbial templates during early diagenesis
    corecore