69 research outputs found

    Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation

    Get PDF
    Functional heterogeneity within the lipid droplet (LD) pool of a single cell has been observed, yet the underlying mechanisms remain enigmatic. Here, we report on identification of a specialized LD subpopulation characterized by a unique proteome and a defined geographical location at the nucleus-vacuole junction contact site. In search for factors determining identity of these LDs, we screened ∼6,000 yeast mutants for loss of targeting of the subpopulation marker Pdr16 and identified Ldo45 (LD organization protein of 45 kD) as a crucial targeting determinant. Ldo45 is the product of a splicing event connecting two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells

    A Genomic-Based Approach Combining In Vivo Selection in Mice to Identify a Novel Virulence Gene in Leishmania

    Get PDF
    Parasites of the genus Leishmania cause a variety of human diseases that range from destructive skin lesions caused by L. major to visceral infections of the liver and spleen caused by L. donovani that result in death. The Leishmania genes responsible for these different pathologies are not known. In the present study, we used a comparative genome-based approach to introduce and over-express L. donovani genes in L. major to determine whether this results in increased virulence of L. major in visceral organs of infected mice. Through this approach, a novel gene termed Li1040 was identified that is potentially involved in protein transport and was shown to increase pathogenesis in the visceral organs in mice. The Li1040 gene may therefore represent a Leishmania virulence gene that has the potential to regulate the pathology of infection in the mammalian host. These observations help to define how Leishmania causes fatal infections in humans and therefore provide a parasite-specific target for therapy

    Cross-Species Analyses Identify the BNIP-2 and Cdc42GAP Homology (BCH) Domain as a Distinct Functional Subclass of the CRAL_TRIO/Sec14 Superfamily

    Get PDF
    The CRAL_TRIO protein domain, which is unique to the Sec14 protein superfamily, binds to a diverse set of small lipophilic ligands. Similar domains are found in a range of different proteins including neurofibromatosis type-1, a Ras GTPase-activating Protein (RasGAP) and Rho guanine nucleotide exchange factors (RhoGEFs). Proteins containing this structural protein domain exhibit a low sequence similarity and ligand specificity while maintaining an overall characteristic three-dimensional structure. We have previously demonstrated that the BNIP-2 and Cdc42GAP Homology (BCH) protein domain, which shares a low sequence homology with the CRAL_TRIO domain, can serve as a regulatory scaffold that binds to Rho, RhoGEFs and RhoGAPs to control various cell signalling processes. In this work, we investigate 175 BCH domain-containing proteins from a wide range of different organisms. A phylogenetic analysis with ∼100 CRAL_TRIO and similar domains from eight representative species indicates a clear distinction of BCH-containing proteins as a novel subclass within the CRAL_TRIO/Sec14 superfamily. BCH-containing proteins contain a hallmark sequence motif R(R/K)h(R/K)(R/K)NL(R/K)xhhhhHPs (‘h’ is large and hydrophobic residue and ‘s’ is small and weekly polar residue) and can be further subdivided into three unique subtypes associated with BNIP-2-N, macro- and RhoGAP-type protein domains. A previously unknown group of genes encoding ‘BCH-only’ domains is also identified in plants and arthropod species. Based on an analysis of their gene-structure and their protein domain context we hypothesize that BCH domain-containing genes evolved through gene duplication, intron insertions and domain swapping events. Furthermore, we explore the point of divergence between BCH and CRAL-TRIO proteins in relation to their ability to bind small GTPases, GAPs and GEFs and lipid ligands. Our study suggests a need for a more extensive analysis of previously uncharacterized BCH, ‘BCH-like’ and CRAL_TRIO-containing proteins and their significance in regulating signaling events involving small GTPases

    Flanking signal and mature peptide residues influence signal peptide cleavage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii) Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria.</p> <p>Results</p> <p>In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as p<it>I</it>, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups.</p> <p>Conclusion</p> <p>We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.</p

    A Genome-Wide Immunodetection Screen in S. cerevisiae Uncovers Novel Genes Involved in Lysosomal Vacuole Function and Morphology

    Get PDF
    Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface – ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY). Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes – MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events
    corecore