71 research outputs found

    Influence of bias voltage on composition and tribological properties Ti-Cr-N coatings formed by ion-plasma deposition

    Get PDF
    Ti-Cr-N coatings were formed on St3 steel by cathodic arc vapor deposition while combining titanium or chromium plasma flows in a residual nitrogen atmosphere. Elemental and phase composition of the coatings were studied using Auger electron spectroscopy (AES) and X-ray diffraction (XRD). Coatings are solid solution on the basis of chromium and titanium mononitrides. It is found that an increase in bias voltage leads to relative rise of titanium concentration and to decrease of chromium concentration. With the values of bias voltage less than 120 V coatings grow with (200) preferred orientation. It is established that Ti-rich coatings (Ti31Cr20N49 and Ti33Cr17N50) have low steady-state friction coefficient, while the Cr-rich coatings (Ti17Cr35N48) has high steady-state friction coefficient. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2077

    Radiation effects in nanosized clusters

    Get PDF
    In this communication we present results of computer simulation of radiationenhanced processes in nanosized ferromagnetic clusters under the irradiation by elementary particles and ions. Dynamic defects and possibility of their experimental monitoring are considered. Radiation resistance of nanostructured materials is characterized by the size of instability region for knocked-out atom. Heating and thermoelastic effects on defect structure and materials functionality are discussed. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2085

    Formation of silicon-based nanostructures by compression plasma flows

    Get PDF
    The use of compression flows (CPF) for the formation of metal and silicide nanostructures for data storage devices, thermoelectric materials and solar cells is presented. The action of CPF with injected metallic powder results in the formation of coatings composed of spherical clusters with complex structure: each submicron cluster (0,1-0,2 ΞΌm radius) is formed from a number of nanosized ones (10-25 nm radius). The action of CPF on binary β€œmetal-silicon” systems provides formation of branched silicon dendrites (tip radius ~ 200 nm, primary spacing ~ 1,2 ΞΌm); interdendritic space is filled with nanostructured (50-100 nm) β€œsilicide-silicon” and β€œmonosilicide-disilicide” composite due to melting of the surface layer, rapid solidification (~ 10-3 m/s) and constitutional overcooling. Mechanisms of formation of nanostructured composites on silicon surface and in thick surface layers is discussed in terms of order parameter evolution and non-equilibrium solidification models. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2086

    In situ stress evolution during growth of transition metal nitride films and nanocomposites

    Get PDF
    The issue of stress evolution during growth of hard transition metal nitride (TMN) based coatings is of vital importance to understand origin of intrinsic stress development and to control stress level in order to avoid mechanical failure of coated components and devices. By using in situ and real-time wafer curvature measurements based on a multiple- beam optical stress sensor (MOSS), basic insights on the atomistic mechanisms at the origin of stress development and stress relaxation can be obtained. In the present paper, a review of recent advances on stress development during reactive magnetron sputter-deposition of binary TMN films (TiN, ZrN, TaN) as wells as ternary systems (TiZrN, TiTaN) will be presented. The influence of growth energetics on the build-up of compressive stress will be addressed. A correlation between stress, texture and film morphology is demonstrated. Finally, illustration will be given for quaternary TiZrAlN nanocomposites. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2074

    Properties of superhard nanostructured coatings Ti-Hf-Si-N

    Get PDF
    New superhard coatings based on Ti-Hf-Si-N featuring high physical and mechanical properties were fabricated. We employed a vacuum-arc source with HF stimulation and a cathode sintered from Ti-Hf-Si. Nitrides were fabricated using atomic nitrogen (N) or a mixture of Ar/N, which were leaked-in a chamber at various pressures and applied to a substrate potentials. RBS, SIMS, GT-MS, SEM with EDXS, XRD, and nanoindentation were employed as analyzing methods of chemical and phase composition of thin films. We also tested tribological and corrosion properties. The resulting coating was a two-phase, nanostructured nc-(Ti, Hf)N and Ξ±-Si3N4. Sizes of substitution solid solution nanograins changed from 3.8 to 6.5 nm, and an interface thickness surrounding Ξ±-Si3N4 varied from 1.2 to 1.8 nm. Coatings hardness, which was measured by nanoindentation was from 42.7 GPa to 48.6 GPa, and an elastic modulus was E = (450 to 515) GPa. The films stoichiometry was defined for various deposition conditions. It was found that in samples with superhard coatings of 42.7 to 48.6GPa hardness and lower roughness in comparison with other series of samples, friction coefficient was equal to 0.2, and its value did not change over all depth (thickness) of coatings. A film adhesion to a substrate was essentially high and reached 25MPa. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ свСрхтвСрдыС покрытия Π½Π° основС Ti-Hf-Si-N с высокими Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскими свойствами. Π’ процСссС синтСза ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ осаТдСния с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π’Π§ напряТСния распылялся Ρ†Π΅Π»ΡŒΠ½ΠΎΠ»ΠΈΡ‚ΠΎΠΉ ΠΊΠ°Ρ‚ΠΎΠ΄ Ti-Hf-Si. Нитриды Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π² срСдС Π°Ρ‚ΠΎΠΌΠ°Ρ€Π½ΠΎΠ³ΠΎ Π°Π·ΠΎΡ‚Π° (N) ΠΈΠ»ΠΈ Π² смСси Ar/N, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΏΡƒΡΠΊΠ°Π»ΠΈΡΡŒ Π² ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… давлСниях. Π₯имичСский ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ составы Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ анализировался ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ RBS, SIMS, GT-MS, SEM с EDXS, РБА, Π° Ρ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ Π½Π°Π½ΠΎΠΈΠ½Π΄Π΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. ИсслСдовались трибологичСскиС ΠΈ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½Ρ‹Π΅ свойства ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ покрытия ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄Π²ΡƒΡ…Ρ„Π°Π·Π½Ρ‹ΠΌΠΈ наноструктурированными nс-(Ti, Hf)N ΠΈ Ξ±-Si3N4. Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π½Π°Π½ΠΎΠ·Π΅Ρ€Π΅Π½ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ раствора Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ ΠΎΡ‚ 3,8 Π΄ΠΎ 6,5 Π½ΠΌ, Π° Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ Ξ±-Si3N4 мСнялась ΠΎΡ‚ 1,2 Π΄ΠΎ 1,8 Π½ΠΌ. Π’Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ H составляла 42,7 48,6 Π“ΠŸΠ°, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ упругости Π• ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π» значСния ΠΎΡ‚ 450 Π“ΠŸΠ° Π΄ΠΎ 515 Π“ΠŸΠ°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° стСхиомСтрия ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… условиях осаТдСния. УстановлСно, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… свСрхтвСрдых ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ с Ρ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒΡŽ 42,7 48.6 Π“ΠŸΠ° наблюдалась Π±ΠΎΠ»Π΅Π΅ низкая ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ, коэффициСнт трСния составлял 0,2, ΠΈ Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ измСнялось ΠΏΠΎ всСй Π³Π»ΡƒΠ±ΠΈΠ½Π΅ (Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅) покрытия. АдгСзия ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΊ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ достигла 25 МПа. Π£ Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π½ΠΎΠ²Ρ– Π½Π°Π΄Ρ‚Π²Π΅Ρ€Π΄Ρ– покриття Π½Π° основі Ti-Hf-SΡ–-N Π· високими Ρ„Ρ–Π·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΠΌΠΈ властивостями. Π£ процСсі синтСзу ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎ-Π΄ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ осадТСння Ρ–Π· застосуванням Π’Π§ Π½Π°ΠΏΡ€ΡƒΠ³ΠΈ Ρ€ΠΎΠ·ΠΏΠΎΡ€ΠΎΡˆΡƒΠ²Π°Π²ΡΡ ΡΡƒΡ†Ρ–Π»ΡŒΠ½ΠΎΠ»ΠΈΡ‚ΠΈΠΉ ΠΊΠ°Ρ‚ΠΎΠ΄ TΡ–-Hf-SΡ–. Нітриди формувалися Ρƒ сСрСдовищі Π°Ρ‚ΠΎΠΌΠ°Ρ€Π½ΠΎΠ³ΠΎ Π°Π·ΠΎΡ‚Ρƒ (N) Π°Π±ΠΎ Ρƒ ΡΡƒΠΌΡ–ΡˆΡ– Ar/N, які напускалися Ρƒ ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ ΠΏΡ€ΠΈ Ρ€Ρ–Π·Π½ΠΈΡ… тисках. Π₯Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΉ Ρ– Ρ„Π°Π·ΠΎΠ²ΠΈΠΉ склади Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Ρ–Π²ΠΎΠΊ аналізувалися ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ RBS, SΠ†MS, GT-MS, SEM Π· EDXS, РБА, Π° Ρ‚Π²Π΅Ρ€Π΄Ρ–ΡΡ‚ΡŒ визначалася наноіндСнтуванням. ДослідТувалися Ρ‚Ρ€ΠΈΠ±ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Ρ‚Π° ΠΊΠΎΡ€ΠΎΠ·Ρ–ΠΉΠ½Ρ– властивості ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π². ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– покриття Ρ” Π΄Π²ΠΎΡ„Π°Π·Π½ΠΈΠΌΠΈ наноструктурованими nс-(TΡ–, Hf)N Ρ– -SΡ–3N4. Π ΠΎΠ·ΠΌΡ–Ρ€ΠΈ Π½Π°Π½ΠΎΠ·Π΅Ρ€Π΅Π½ Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ Π²Π°Ρ€Ρ–ΡŽΠ²Π°Π»ΠΈΡΡ Π²Ρ–Π΄ 3,8 Π΄ΠΎ 6,5 Π½ΠΌ, Π° Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½Π° Π½Π°Π²ΠΊΠΎΠ»ΠΈΡˆΠ½ΡŒΠΎΡ— ΠΎΠ±ΠΎΠ»ΠΎΠ½ΠΊΠΈ -SΡ–3N4 Π·ΠΌΡ–Π½ΡŽΠ²Π°Π»Π°ΡΡ Π²Ρ–Π΄ 1,2 Π΄ΠΎ 1,8 Π½ΠΌ. Π’Π²Π΅Ρ€Π΄Ρ–ΡΡ‚ΡŒ ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² H становила 42,7 48,6 Π“ΠŸΠ°, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пруТності Π• ΠΏΡ€ΠΈΠΉΠΌΠ°Π² значСння Π²Ρ–Π΄ 450 Π“ΠŸΠ° Π΄ΠΎ 515 Π“ΠŸΠ°. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΡΡ‚Π΅Ρ…Ρ–ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–ΡŽ ΠΏΠ»Ρ–Π²ΠΎΠΊ ΠΏΡ€ΠΈ Ρ€Ρ–Π·Π½ΠΈΡ… ΡƒΠΌΠΎΠ²Π°Ρ… осадТСння. ВстановлСно, Ρ‰ΠΎ Ρƒ Π·Ρ€Π°Π·ΠΊΠ°Ρ… Π½Π°Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Ρ–Π· Ρ‚Π²Π΅Ρ€Π΄Ρ–ΡΡ‚ΡŽ 42,7 48.6 Π“ΠŸΠ° спостСрігалася Π½ΠΈΠΆΡ‡Π° ΡˆΠΎΡ€ΡΡ‚ΠΊΡ–ΡΡ‚ΡŒ Ρƒ порівнянні Π· Ρ–Π½ΡˆΠΈΠΌΠΈ Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ, ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ тСртя становив 0,2, Ρ– ΠΉΠΎΠ³ΠΎ значСння Π½Π΅ Π·ΠΌΡ–Π½ΡŽΠ²Π°Π»ΠΎΡΡ Π·Π° глибиною (Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΎΡŽ) покриття. АдгСзія ΠΏΠ»Ρ–Π²ΠΊΠΈ Π΄ΠΎ ΠΏΡ–Π΄ΠΊΠ»Π°Π΄ΠΊΠΈ досягла 25 МПа

    Nanostructured formations and coatings created on the surface of materials exposed to compression plasma flows

    No full text
    The paper presents the results of investigations on changing silicon and aluminium morphology under the action of compression plasma flows generated by the quasi-stationary plasma accelerator (magnetoplasma compressor type). The feasibility of spraying nanostructured metal films by compression flows was demonstrated. The resulting single-layer coating consists of spherical particles measuring 50 to 200 nm. Such particles bonded to each other cover a surface relief including flat areas and regular structures developing during plasma action. The state and composition of a sample surface were studied by SEM- and EXD-methodsΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π·ΠΌΡ–Π½ΠΈ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–Ρ— ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– пластин ΠΊΡ€Π΅ΠΌΠ½Ρ–ΡŽ ΠΉ Π°Π»ΡŽΠΌΡ–Π½Ρ–ΡŽ ΠΏΡ€ΠΈ Π²ΠΏΠ»ΠΈΠ²Ρ– Π½Π° Π½ΠΈΡ… компрСсійними ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΈΠΌΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ, Ρ‰ΠΎ Π³Π΅Π½Π΅Ρ€ΡƒΡŽΡ‚ΡŒΡΡ квазістаціонарним ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΈΠΌ ΠΏΡ€ΠΈΡΠΊΠΎΡ€ΡŽΠ²Π°Ρ‡Π΅ΠΌ Ρ‚ΠΈΠΏΡƒ ΠΌΠ°Π³Π½Ρ–Ρ‚ΠΎΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΈΠΉ компрСсор. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΎΠ²Π°Π½ΠΎ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ нанСсСння Π½Π° ΠΏΡ–Π΄ΠΊΠ»Π°Π΄ΠΊΠΈ наноструктурних ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚ΡŒ Π·Π° допомогою компрСсійних ΠΏΠΎΡ‚ΠΎΠΊΡ–Π².ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований измСнСния ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΠΈ повСрхности пластин крСмния ΠΈ алюминия ΠΏΡ€ΠΈ воздСйствии Π½Π° Π½ΠΈΡ… компрСссионными ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ квазистационарным ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ускоритСлСм Ρ‚ΠΈΠΏΠ° ΠΌΠ°Π³Π½ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹ΠΉ компрСссор. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ нанСсСния Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ наноструктурных мСталличСских ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ компрСссионных ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ²

    Modification of coating-substrate systems under the action of compression plasma flow

    No full text
    The results of studying changes in physical and mechanical properties of coating-substrate systems subjected to the compression plasma flow are presented. The possibility for doping the substrate both with pre-deposited coating components and with plasma-forming substance during liquid-phase mixing and resolidification of near-surface layers melted by the compression plasma flow is shown.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π·ΠΌΡ–Π½ΠΈ Ρ„Ρ–Π·ΠΈΠΊΠΎ-ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… властивостСй систСм покриття-ΠΏΡ–Π΄ΠΊΠ»Π°Π΄ΠΊΠ° ΠΏΡ€ΠΈ Π²ΠΏΠ»ΠΈΠ²Ρ– Π½Π° Π½ΠΈΡ… компрСсійним ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΈΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΎΠ²Π°Π½ΠΎ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ лСгування ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ ΠΏΡ–Π΄ΠΊΠ»Π°Π΄ΠΊΠΈ як ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ нанСсСного покриття, Ρ‚Π°ΠΊ Ρ– Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡŽ Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΎΡŽ ΠΏΠ»Π°Π·ΠΌΠΈ, Ρƒ процСсі Ρ€Ρ–Π΄ΠΊΠΎΡ„Π°Π·Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΡ–ΡˆΡƒΠ²Π°Π½Π½Ρ Ρ– пСрСзатвСрдіння Ρ€ΠΎΠ·ΠΏΠ»Π°Π²Π»Π΅Π½ΠΈΡ… ΠΏΡ–Π΄ Π΄Ρ–Ρ”ΡŽ компрСсійного ΠΏΠ»Π°Π·ΠΌΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΡƒ ΠΏΡ€ΠΈΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ–Ρ… ΡˆΠ°Ρ€Ρ–Π².ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований измСнСния Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСских свойств систСм ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅- ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ° ΠΏΡ€ΠΈ воздСйствии Π½Π° Π½ΠΈΡ… компрСссионным ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ лСгирования ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ нанСсСнного покрытия, Ρ‚Π°ΠΊ ΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌ вСщСством ΠΏΠ»Π°Π·ΠΌΡ‹, Π² процСссС ΠΆΠΈΠ΄ΠΊΠΎΡ„Π°Π·Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΡ ΠΈ пСрСзатвСрдСвания расплавлСнных ΠΏΠΎΠ΄ дСйствиСм компрСссионного ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° приповСрхностных слоСв

    Structures and properties of Ti alloys after double implantation

    Get PDF
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Π½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ исслСдованию структуры ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскиС свойства приповСрхностных слоСв Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹Ρ… сплавов послС (W+, Mo+) ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΡ‚ΠΆΠΈΠ³Π° ΠΏΡ€ΠΈ 550 Π‘ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 Ρ‡. ИспользованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния (RBS) ΠΈΠΎΠ½ΠΎΠ² гСлия ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ², ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии (SEM) с ΠΌΠΈΠΊΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·Π° (ЭЦП), (WDS), ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² (ΠΈΠΎΠ½ΠΎΠ²), ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ рСнтгСновского излучСния (PIXE), Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (РБА) с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅Π³ΠΎ падСния (0,5 Π³Ρ€Π°Π΄.), измСрСния нанотвСрдости ΠΈ модуля упругости, трСния износа (Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€-пластины), измСрСния коррозионная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ Π² солСвом растворС, ΠΌΡ‹ исслСдовали VT-6 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΈ опрСдСляСтся ΠΈΡ… сопротивлСния усталости ΠΏΡ€ΠΈ цикличСских Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°Ρ…. Π‘Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π΄Π²ΠΎΠΉΠ½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ твСрдости, сниТСниС износа ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ сопротивлСния усталости, Ρ‡Ρ‚ΠΎ Π±Ρ‹Π»ΠΎ связано с Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ малодиспСрсного Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ΄Π½Ρ‹Ρ… Ρ„Π°Π·.The paper presents new results on investigation of structure and physical-mechanical properties of near surface layers of titanium alloys after (W+, Mo+) ion implantation and subsequent thermal annealing under 550 C for 2 h. Using back scattering (RBS) of helium ions and protons, scanning electron microscopy (SEM) with microanalysis (EDS), (WDS), proton (ion) induced X-ray emission (PIXE), X-ray phase analysis (XRD) with a grazing incidence geometry (0.5 angle), measurements of nanohardness and elastic modulus, friction wear (cylinder-plate), measurements of corrosion resistance in a salt solution, we investigated the VT-6 samples, and determined their fatigue resistance under cyclic loads. Double increase of hardness, decrease of wear and increased fatigue resistance were found, which was related to the formation of small dispersion (nanodimension) nitride, carbonitride, and intermetalloid phases

    Structures and properties of Ti alloys after double implantation

    Get PDF
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Π½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ исслСдованию структуры ΠΈ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-мСханичСскиС свойства приповСрхностных слоСв Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹Ρ… сплавов послС (W+, Mo+) ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΡ‚ΠΆΠΈΠ³Π° ΠΏΡ€ΠΈ 550 Π‘ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2 Ρ‡. ИспользованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния (RBS) ΠΈΠΎΠ½ΠΎΠ² гСлия ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ², ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии (SEM) с ΠΌΠΈΠΊΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·Π° (ЭЦП), (WDS), ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ² (ΠΈΠΎΠ½ΠΎΠ²), ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ рСнтгСновского излучСния (PIXE), Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (РБА) с Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅Π³ΠΎ падСния (0,5 Π³Ρ€Π°Π΄.), измСрСния нанотвСрдости ΠΈ модуля упругости, трСния износа (Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€-пластины), измСрСния коррозионная ΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ Π² солСвом растворС, ΠΌΡ‹ исслСдовали VT-6 ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΠΈ опрСдСляСтся ΠΈΡ… сопротивлСния усталости ΠΏΡ€ΠΈ цикличСских Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠ°Ρ…. Π‘Ρ‹Π»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π΄Π²ΠΎΠΉΠ½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ твСрдости, сниТСниС износа ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ сопротивлСния усталости, Ρ‡Ρ‚ΠΎ Π±Ρ‹Π»ΠΎ связано с Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ малодиспСрсного Π½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ΄Π°, ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΠ΄Π½Ρ‹Ρ… Ρ„Π°Π·.The paper presents new results on investigation of structure and physical-mechanical properties of near surface layers of titanium alloys after (W+, Mo+) ion implantation and subsequent thermal annealing under 550 C for 2 h. Using back scattering (RBS) of helium ions and protons, scanning electron microscopy (SEM) with microanalysis (EDS), (WDS), proton (ion) induced X-ray emission (PIXE), X-ray phase analysis (XRD) with a grazing incidence geometry (0.5 angle), measurements of nanohardness and elastic modulus, friction wear (cylinder-plate), measurements of corrosion resistance in a salt solution, we investigated the VT-6 samples, and determined their fatigue resistance under cyclic loads. Double increase of hardness, decrease of wear and increased fatigue resistance were found, which was related to the formation of small dispersion (nanodimension) nitride, carbonitride, and intermetalloid phases
    • …
    corecore