347 research outputs found

    Energy flux through the horizon in the black hole-domain wall systems

    Full text link
    We study various configurations in which a domain wall (or cosmic string), described by the Nambu-Goto action, is embedded in a background space-time of a black hole in (3+1)(3+1) and higher dimensional models. We calculate energy fluxes through the black hole horizon. In the simplest case, when a static domain wall enters the horizon of a static black hole perperdicularly, the energy flux is zero. In more complicated situations, where parameters which describe the domain wall surface are time and position dependent, the flux is non-vanishing is principle. These results are of importance in various conventional cosmological models which accommodate the existence of domain walls and strings and also in brane world scenarios.Comment: references added, accepted for publication in JHE

    Stationary strings near a higher-dimensional rotating black hole

    Full text link
    We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration which crosses the infinite red-shift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a spacetime with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string.Comment: 13 pages, contains additianal material at the end of Section 8, also small misprints are correcte

    Thorny Spheres and Black Holes with Strings

    Get PDF
    We consider thorny spheres, that is 2-dimensional compact surfaces which are everywhere locally isometric to a round sphere S2S^2 except for a finite number of isolated points where they have conical singularities. We use thorny spheres to generate, from a spherically symmetric solution of the Einstein equations, new solutions which describe spacetimes pierced by an arbitrary number of infinitely thin cosmic strings radially directed. Each string produces an angle deficit proportional to its tension, while the metric outside the strings is a locally spherically symmetric solution. We prove that there can be arbitrary configurations of strings provided that the directions of the strings obey a certain equilibrium condition. In general this equilibrium condition can be written as a force-balance equation for string forces defined in a flat 3-space in which the thorny sphere is isometrically embedded, or as a constraint on the product of holonomies around strings in an alternative 3-space that is flat except for the strings. In the case of small string tensions, the constraint equation has the form of a linear relation between unit vectors directed along the string axes.Comment: 37 pages, 11 figure

    Soap Bubbles in Outer Space: Interaction of a Domain Wall with a Black Hole

    Get PDF
    We discuss the generalized Plateau problem in the 3+1 dimensional Schwarzschild background. This represents the physical situation, which could for instance have appeared in the early universe, where a cosmic membrane (thin domain wall) is located near a black hole. Considering stationary axially symmetric membranes, three different membrane-topologies are possible depending on the boundary conditions at infinity: 2+1 Minkowski topology, 2+1 wormhole topology and 2+1 black hole topology. Interestingly, we find that the different membrane-topologies are connected via phase transitions of the form first discussed by Choptuik in investigations of scalar field collapse. More precisely, we find a first order phase transition (finite mass gap) between wormhole topology and black hole topology; the intermediate membrane being an unstable wormhole collapsing to a black hole. Moreover, we find a second order phase transition (no mass gap) between Minkowski topology and black hole topology; the intermediate membrane being a naked singularity. For the membranes of black hole topology, we find a mass scaling relation analogous to that originally found by Choptuik. However, in our case the parameter pp is replaced by a 2-vector p\vec{p} parametrizing the solutions. We find that MassppγMass\propto|\vec{p}-\vec{p}_*|^\gamma where γ0.66\gamma\approx 0.66. We also find a periodic wiggle in the scaling relation. Our results show that black hole formation as a critical phenomenon is far more general than expected.Comment: 15 pages, Latex, 4 figures include

    STATIONARY STRINGS AND 2-D BLACK HOLES

    Full text link
    A general description of string excitations in stationary spacetimes is developed. If a stationary string passes through the ergosphere of a 4-dimensional black hole, its world-sheet describes a 2-dimensional black (or white) hole with horizon coinciding with the static limit of the 4-dimensional black hole. Mathematical results for 2-dimensional black holes can therefore be applied to physical objects (say) cosmic strings in the vicinity of Kerr black holes. An immediate general result is that the string modes are thermally excited. The string excitations are determined by a coupled system of scalar field equations in the world-sheet metric. In the special case of excitations propagating along a stationary string in the equatorial plane of the Kerr-Newman black hole, they reduce to the ss-wave scalar field equations in the 4-dimensional Reissner-Nordstr\"{o}m black hole. We briefly discuss possible applications of our results to the black hole information puzzle.Comment: 13 pages, Late

    Quasinormal mode characterization of evaporating mini black holes

    Get PDF
    According to recent theoretical developments, it might be possible to produce mini black holes in the high energy experiments in the LHC at CERN. We propose here a model based on the nn-dimensional Vaidya metric in double null coordinates for these decaying black holes. The associated quasinormal modes are considered. It is shown that only in the very last instants of the evaporation process the stationary regime for the quasinormal modes is broken, implying specific power spectra for the perturbations around these mini black-holes. From scattered fields one could recover, in principle, the black hole parameters as well as the number of extra dimensions. The still mysterious final fate of such objects should not alter significantly our main conclusions.Comment: v4: 9 pages, 3 figures. Minor correction

    Interaction of a brane with a moving bulk black hole

    Full text link
    We study the interaction of an n-dimensional topological defect (n-brane) described by the Nambu-Goto action with a higher-dimensional Schwarzschild black hole moving in the bulk spacetime. We derive the general form of the perturbation equations for an n-brane in the weak field approximation and solve them analytically in the most interesting cases. We specially analyze applications to brane world models. We calculate the induced geometry on the brane generated by a moving black hole. From the point of view of a brane observer, this geometry can be obtained by solving (n+1)-dimensional Einstein's equations with a non-vanishing right hand side. We calculate the effective stress-energy tensor corresponding to this `shadow-matter'. We explicitly show that there exist regions on the brane where a brane observer sees an apparent violation of energy conditions. We also study the deflection of light propagating in the region of influence of this `shadow matter'.Comment: version accepted for publication in Phys. Rev.

    Quantum backreaction of massive fields and self-consistent semiclassical extreme black holes and acceleration horizons

    Get PDF
    We consider the effect of backreaction of quantized massive fields on the metric of extreme black holes (EBH). We find the analytical approximate expression for the stress-energy tensor for a scalar (with an arbitrary coupling), spinor and vector fields near an event horizon. We show that, independent of a concrete type of EBH, the energy measured by a freely falling observer is finite on the horizon, so that quantum backreaction is consistent with the existence of EBH. For the Reissner-Nordstrom EBH with a total mass M_{tot} and charge Q we show that for all cases of physical interest M_{tot}< Q. We also discuss different types of quantum-corrected Bertotti-Robinson spacetimes, find for them exact self-consistent solutions and consider situations in which tiny quantum corrections lead to the qualitative change of the classical geometry and topology. In all cases one should start not from a classical background with further adding quantum corrections but from the quantum-corrected self-consistent geometries from the very beginning.Comment: Minor corrections. To appear in Phys. Rev.

    Stationary strings and branes in the higher-dimensional Kerr-NUT-(A)dS spacetimes

    Full text link
    We demonstrate complete integrability of the Nambu-Goto equations for a stationary string in the general Kerr-NUT-(A)dS spacetime describing the higher-dimensional rotating black hole. The stationary string in D dimensions is generated by a 1-parameter family of Killing trajectories and the problem of finding a string configuration reduces to a problem of finding a geodesic line in an effective (D-1)-dimensional space. Resulting integrability of this geodesic problem is connected with the existence of hidden symmetries which are inherited from the black hole background. In a spacetime with p mutually commuting Killing vectors it is possible to introduce a concept of a ξ\xi-brane, that is a p-brane with the worldvolume generated by these fields and a 1-dimensional curve. We discuss integrability of such ξ\xi-branes in the Kerr-NUT-(A)dS spacetime.Comment: 8 pages, no figure

    Propagation of perturbations along strings

    Full text link
    A covariant formalism for physical perturbations propagating along a string in an arbitrary curved spacetime is developed. In the case of a stationary string in a static background the propagation of the perturbations is described by a wave-equation with a potential consisting of 2 terms: The first term describing the time-dilation and the second is connected with the curvature of space. As applications of the developed approach the propagation of perturbations along a stationary string in Rindler, de Sitter, Schwarzschild and Reissner-Nordstrom spacetimes are investigated.Comment: 18 pages, LaTeX, Nordita-93/17
    corecore