30 research outputs found

    Two-dimensional array of magnetic particles: The role of an interaction cutoff

    Full text link
    Based on theoretical results and simulations, in two-dimensional arrangements of a dense dipolar particle system, there are two relevant local dipole arrangements: (1) a ferromagnetic state with dipoles organized in a triangular lattice, and (2) an anti-ferromagnetic state with dipoles organized in a square lattice. In order to accelerate simulation algorithms we search for the possibility of cutting off the interaction potential. Simulations on a dipolar two-line system lead to the observation that the ferromagnetic state is much more sensitive to the interaction cutoff RR than the corresponding anti-ferromagnetic state. For R8R \gtrsim 8 (measured in particle diameters) there is no substantial change in the energetical balance of the ferromagnetic and anti-ferromagnetic state and the ferromagnetic state slightly dominates over the anti-ferromagnetic state, while the situation is changed rapidly for lower interaction cutoff values, leading to the disappearance of the ferromagnetic ground state. We studied the effect of bending ferromagnetic and anti-ferromagnetic two-line systems and we observed that the cutoff has a major impact on the energetical balance of the ferromagnetic and anti-ferromagnetic state for R4R \lesssim 4. Based on our results we argue that R5R \approx 5 is a reasonable choice for dipole-dipole interaction cutoff in two-dimensional dipolar hard sphere systems, if one is interested in local ordering.Comment: 8 page

    The Aerodynamics of Hummingbird Flight

    Full text link
    Hummingbirds fly with their wings almost fully extended during their entire wingbeat. This pattern, associated with having proportionally short humeral bones, long distal wing elements, and assumed to be an adaptation for extended hovering flight, has lead to predictions that the aerodynamic mechanisms exploited by hummingbirds during hovering should be similar to those observed in insects. To test these predictions, we flew rufous hummingbirds (Selasphorus rufus, 3.3 g, n = 6) in a variable–speed wind tunnel (0-12 ms-1) and measured wake structure and dynamics using digital particle image velocimetry (DPIV). Unlike hovering insects, hummingbirds produced 75% of their weight support during downstroke and only 25% during upstroke, an asymmetry due to the inversion of their cambered wings during upstroke. Further, we have found no evidence of sustained, attached leading edge vorticity (LEV) during up or downstroke, as has been seen in similarly-sized insects - although a transient LEV is produced during the rapid change in angle of attack at the end of the downstroke. Finally, although an extended-wing upstroke during forward flight has long been thought to produce lift and negative thrust, we found circulation during downstroke alone to be sufficient to support body weight, and that some positive thrust was produced during upstroke, as evidenced by a vortex pair shed into the wake of all upstrokes at speeds of 4 – 12 m s-1

    Increasing comparability among coral bleaching experiments

    Get PDF
    Coral bleaching is the single largest global threat to coral reefs worldwide. Integrating the diverse body of work on coral bleaching is critical to understanding and combating this global problem. Yet investigating the drivers, patterns, and processes of coral bleaching poses a major challenge. A recent review of published experiments revealed a wide range of experimental variables used across studies. Such a wide range of approaches enhances discovery, but without full transparency in the experimental and analytical methods used, can also make comparisons among studies challenging. To increase comparability but not stifle innovation, we propose a common framework for coral bleaching experiments that includes consideration of coral provenance, experimental conditions, and husbandry. For example, reporting the number of genets used, collection site conditions, the experimental temperature offset(s) from the maximum monthly mean (MMM) of the collection site, experimental light conditions, flow, and the feeding regime will greatly facilitate comparability across studies. Similarly, quantifying common response variables of endosymbiont (Symbiodiniaceae) and holobiont phenotypes (i.e., color, chlorophyll, endosymbiont cell density, mortality, and skeletal growth) could further facilitate cross-study comparisons. While no single bleaching experiment can provide the data necessary to determine global coral responses of all corals to current and future ocean warming, linking studies through a common framework as outlined here, would help increase comparability among experiments, facilitate synthetic insights into the causes and underlying mechanisms of coral bleaching, and reveal unique bleaching responses among genets, species, and regions. Such a collaborative framework that fosters transparency in methods used would strengthen comparisons among studies that can help inform coral reef management and facilitate conservation strategies to mitigate coral bleaching worldwide

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Nanophononics: state of the art and perspectives

    Full text link

    Cell biology in model systems as the key to understanding corals

    No full text
    Corals provide the foundation of important tropical reef ecosystems but are in global decline for multiple reasons, including climate change. Coral health depends on a fragile partnership with intracellular dinoflagellate symbionts. We argue here that progress in understanding coral biology requires intensive study of the cellular processes underlying this symbiosis. Such study will inform us on how the coral symbiosis will be affected by climate change, mechanisms driving coral bleaching and disease, and the coevolution of this symbiosis in the context of other host-microbe interactions. Drawing lessons from the broader history of molecular and cell biology and the study of other host-microbe interactions, we argue that a model-systems approach is essential for making effective progress in understanding coral cell biology
    corecore