15 research outputs found

    Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas

    Full text link
    The electron-electron, electron-ion, ion-ion and charge-charge static structure factors are calculated for alkali (at T = 30 000 K, 60 000 K, n (e) = 0.7 x 10(21) A center dot 1.1 x 10(22) cm(-3)) and Be2+ (at T = 20 eV, n (e) = 2.5 x 10(23) cm(-3)) plasmas using the method described by Gregori et al. The dynamic structure factors for alkali plasmas are calculated at T = 30 000 K, n (e) = 1.74 x 10(20), 1.11 x 10(22) cm(-3) using the method of moments developed by Adamjan et al. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the repulsion due to the Pauli exclusion principle. The repulsive part of the Hellmann-Gurskii-Krasko (HGK) potential reflects important features of the ion structure. Our results on the static structure factors for Be2+ plasma deviate from the data obtained by Gregori et al., while our dynamic structure factors are in a reasonable agreement with those of Adamyan et al.: at higher values of k and with increasing k the curves damp down while at lower values of k, and especially at higher electron coupling, we observe sharp peaks also reported in the mentioned work. For lower electron coupling the dynamic structure factors of Li+, Na+, K+, Rb+ and Cs+ do not differ while at higher electron coupling these curves split. As the number of shell electrons increases from Li+ to Cs+ the curves shift in the direction of low absolute value of omega and their heights diminish. We conclude that the short range forces, which we take into account by means of the HGK model potential, which deviates from the Coulomb and Deutsch ones, influence the static and dynamic structure factors significantly.The work has been realised at the Humboldt University at Berlin (Germany). One of the authors (S. P. Sadykova) would like to express sincere thanks to the Erasmus Mundus Program of the EU for the financial support and especially to Mr. M. Parske for his aid, to the Institute of Physics, Humboldt University at Berlin, for the support which made her participation at some scientific Conferences possible; I. M. T. acknowledges the financial support of the Spanish Ministerio de Educacion y Ciencia Project No. ENE2007-67406-C02-02/FTN and valuable discussions with Dr. D. Gericke.Sadykova, SP.; Ebeling, W.; Tkachenko Gorski, IM. (2011). Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas. European Physical Journal D. 61(1):117-130. https://doi.org/10.1140/epjd/e2010-10118-yS117130611G. Gregori, O.L. Landen, S.H. Glenzer, Phys. Rev. E 74, 026402 (2006)G. Gregori, A. Ravasio, A. Höll, S.H. Glenzer, S.J. Rose, High Energy Density Physics 3, 99 (2007)V.M. Adamyan, I.M. Tkachenko, Teplofiz. Vys. Temp. 21, 417 (1983) [High Temp. (USA) 21, 307 (1983)]V.M. Adamyan, T. Meyer, I.M. Tkachenko, Fiz. Plazmy 11, 826 (1985) [Sov. J. Plasma Phys. 11, 481 (1985)]S.V. Adamjan, I.M. Tkachenko, J.L. Muñoz-Cobo, G. Verdú Martín, Phys. Rev. E 48, 2067 (1993)V.M. Adamyan, I.M. Tkachenko, Contrib. Plasma Phys. 43, 252 (2003)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 76 (2009)M.J. Rosseinsky, K. Prassides, Nature 464, 39 (2010)Physics and Chemistry of Alkali Metal Adsorption, edited by H.P. Bonzel, A.M. Bradshaw, G. Ertl (Elsevier, Amsterdam, 1989), Materials Science Monographs, Vol. 57A.N. Klyucharev, N.N. Bezuglov, A.A. Matveev, A.A. Mihajlov, Lj.M. Ignjatović, M.S. Dimitrijević, New Astron. Rev. 51, 547 (2007)F. Hensel, Liquid Metals, edited by R. Evans, D.A. Greenwood, IOP Conf. Ser. No. 30 (IPPS, London, 1977)F. Hensel, S. Juengst, F. Noll, R. Winter, In Localisation and Metal Insulator Transitions, edited by D. Adler, H. Fritsche (Plenum Press, New York, 1985)N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974)H. Hess, Physics of nonideal plasmas, edited by W. Ebeling, A. Foerster, R. Radtke, B.G. Teubner (Leipzig, 1992)V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 388 (2009)H. Ebert, Physikalisches Taschenbuch (F. Vieweg & Sohn, Braunschweig, 1967)S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, O.L. Landen, Phys. Rev. Lett. 90, 175002 (2003)G. Gregori, S.H. Glenzer, H.-K. Chung, D.H. Froula, R.W. Lee, N.B. Meezan, J.D. Moody, C. Niemann, O.L. Landen, B. Holst, R. Redmer, S.P. Regan, H. Sawada, J. Quant. Spectrosc. Radiat. Transfer 99, 225237 (2006)D. Riley, N.C. Woolsey, D. McSherry, I. Weaver, A. Djaoui, E. Nardi, Phys. Rev. Lett. 84, 1704 (2000)S.H. Glenzer, Phys. Rev. Lett. 98, 065002 (2007)J. Sheffield, Plasma Scattering of Electromagnetic Radiation (Academic Press, New York, 1975)A. Höll, Th. Bornath, L. Cao, T. Döppner, S. Düsterer, E. Föster, C. Fortmann, S.H. Glenzer, G. Gregori, T. Laarmann, K.-H. Meiwes-Broer, A. Przystawik, P. Radcliffe, R. Redmer, H. Reinholz, G. Röpke, R. Thiele, J. Tiggesbäumker, S. Toleikis, N.X. Truong, T. Tschentscher, I. Ushmann, U. Zastrau, High Energy Density Phys. 3, 120 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, G.M. Meirkhanova, I.M. Tkachenko, Phys. Rev. E 76, 026403 (2007)Yu.V. Arkhipov, A. Askaruly, D. Ballester, A.E. Davletov, I.M. Tkachenko, G. Zwicknagel, Phys. Rev. E 81, 026402 (2010)J.P. Hansen, I.R. Mc. Donald, Phys. Rev. A 23, 2041 (1981)J.P. Hansen, E.L. Polock, I.R. McDonald, Phys. Rev. Lett. 32, 277 (1974)V. Schwarz, B. Holst, T. Bornath, C. Fortmann, W-D. Kraeft, R. Thiele, R. Redmer, G. Gregori, H. Ja Leed, T. Döppner, S.H. Glenzer, High Energy Density Phys. 5, 1 (2009)D.O. Gericke, K. Wünsch, J. Vorberger, Nucl. Instrum. Methods Phys. Res. A 606, 142 (2009)B. Bernu, D. Ceperley, Quantum Monte Carlo Methods in Physics and Chemistry, edited by M.P. Nightingale, C. Umrigar (Kluwer Academic Publishers, Boston, 1999), NATO ASI Series, Series C, Mathematical and Physical Sciences, Vol. C-525G. Kelbg, Ann. Physik 13 354 (1964)C. Deutsch, Phys. Lett. A 60, 317 (1977)H. Minoo, M.M. Gombert, C. Deutsch, Phys. Rev. A 23, 924 (1981)W. Ebeling, G.E. Norman, A.A. Valuev, I. Valuev, Contrib. Plasma Phys. 39, 61 (1999)A.V. Filinov, M. Bonitz, W. Ebeling, J. Phys. A. 36, 5957 (2003)H. Hellmann, J. Chem. Phys. 3, 61 (1935)H. Hellmann, Acta Fizicochem. USSR 1, 913 (1935)H. Hellmann, Acta Fizicochem. USSR 4, 225 (1936)H. Hellmann, W. Kassatotschkin, Acta Fizicochem. USSR 5, 23 (1936)W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966)V. Heine, M.L. Cohen, D. Weaire, Psevdopotenzcial'naya Teoriya (Mir, Moskva, 1973)V. Heine, The pseudopotential concept, edited by H. Ehrenreich, F. Seitz, D. Turnbull, Solid State Physics 24, 1 (Academic, New York 1970)G.L. Krasko, Z.A. Gurskii, JETP Lett. 9, 363 (1969)W. Ebeling, W.-D. Kraeft, D. Kremp, Theory of Bound State and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976)W. Zimdahl, W. Ebeling, Ann. Phys. (Leipzig) 34, 9 (1977)W. Ebeling, C.-V. Meister, R. Saendig, 13 ICPIG (Berlin, 1977) 725W. Ebeling, C.V. Meister, R. Saendig, W.-D. Kraeft, Ann. Phys. 491, 321 (1979)N.N. Bogolyubov, Dynamical Theory Problems in Statistical Physics (in Russian) (GITTL, Moscow, 1946)N.N. Bogolyubov, Studies in Statistical Mechanics, Engl. Transl., edited by J. De Boer, G.E. Uhlenbeck (North-Holland, Amsterdam, 1962)H. Falkenhagen, Theorie der Elektrolyte (S. Hirzel Verlag, Leipzig, 1971), p. 369Yu.V. Arkhipov, F.B. Baimbetov, A.E. Davletov, Eur. Phys. J. D 8, 299 (2000)P. Seuferling, J. Vogel, C. Toepffer, Phys. Rev. A 40, 323 (1989)L. Szasz, Pseudopotential Theory of Atoms and Molecules (Wiley-Intersc., New York, 1985)W.H.E. Schwarz, Acta Phys. Hung. 27, 391 (1969)W.H.E. Schwarz, Theor. Chim. Acta 11, 307 (1968)N.P. Kovalenko, Yu.P. Krasnyj, U. Krey, Physics of Amorphous Metalls (Wiley-VCH, Weinheim, 2001)Z.A. Gurski, G.L. Krasko, Doklady Akademii Nauk SSSR (in Russian) 197, 810 (1971)C. Fiolhais, J.P. Perdew, S.Q. Armster, J.M. MacLaren, Phys. Rev. B 51, 14001 (1995)S.S. Dalgic, S. Dalgic, G. Tezgor, Phys. Chem. Liq. 40, 539, (2002)E.M. Apfelbaum, Phys. Chem. Liq., 48, 534 (2010)Yu.V. Arkhipov, A.E. Davletov, Phys. Lett. A 247, 339 (1998)W. Ebeling, J. Ortner, Physica Scripta T 75, 93 (1998)J. Ortner, F. Schautz, W. Ebeling, Phys. Rev. E 56, 4665 (1997)N.I. Akhieser, The classical Moment Problem (Oliver and Boyd, London, 1965)M.G. Krein, A.A. Nudel'man, The Markov Moment Problem and External Problems (American Mathematical Society, Translations, New York, 1977)M.J. Corbatón, I.M. Tkachenko, Int. Conference on Strongly Coupled Coulomb Systems (SCCS2008), Camerino, Italy, July-August, 2008, Book of Abstracts, p. 90V.M. Adamyan, A.A. Mihajlov, N.M. Sakan, V.A. Srećković, I.M. Tkachenko, J. Phys. A: Math. Theor. 42, 214005 (2009)S. Ichimaru, Statistical Plasma Physics, Vol. I: Basic Principles (Addison-Wesley, Redwood City, 1992)W. Ebeling, A. Foerster, W. Richert, H. Hess, Physics A 150, 159 (1988)H. Wagenknecht, W. Ebeling, A. Förster, Contrib. Plasma Phys. 41, 15 (2001

    Increasing the uptake of bowel cancer screening in BME communities in Nottingham city: a qualitative study

    Get PDF
    Bowel cancer is the fourth most common cancer in the UK. In 2011, there were 15,659 bowel cancer deaths recorded: 7,139 women and 8,520 men (Cancer Research UK, 2014). In women it is the second most common cancer after breast cancer; for men, it is the third most common after prostate and lung cancers. More than 8 out of 10 bowel cancers are diagnosed in people aged 60 or over. Bowel cancer is a predominantly curable disease, especially when it is caught in its early stages (Beating Bowel Cancer, 2012). The mortality rates of bowel cancer have been falling in the UK over the past few decades. The mortality rate for women more than halved over a period of 40 years, falling from 26 deaths per 100,000 people in 1971 to 12.6 deaths per 100,000 in 2011. This figure increased slightly in 2012 to 13.0 deaths per 100,000. The rate for men has also shown a significant decline, with 33.5 deaths occurring per 100,000 in 1971 falling to 20.3 deaths in 2011 (20.5 in 2012). (Cancer Research UK, 2014). The NHS Bowel Cancer Screening Programme (BCSP) rolled out a nationwide campaign to screen the population aged between 60 and 74 every two years, with those over this age group able to obtain home screening kits. Screening for bowel cancer is a test designed to be done at home, in an attempt to make the perceived unpleasant nature of the process as agreeable as possible. People are sent a kit in the post that requires them to add faecal samples and then send back for laboratory testing; this is called a faecal occult blood test (FOBt). There are, however, limitations surrounding the engagement of certain community groups in the uptake of screening for cancer, and perhaps more so where there is active engagement required. These groups of people include black and minority ethnic (BME) groups, those facing social and economical deprivation and men. In the UK and many other countries globally, there are initiatives and campaigns to help raise awareness of bowel cancer screening in the community; these are run both in collaboration with governments and by charities and advocacy groups. Extensive work has been done surrounding the identification of barriers faced by individuals and to identify the ways to breakdown these obstacles and encourage more people to take part in the possible life-saving process

    A remark on Nehari's problem

    No full text
    corecore