25 research outputs found

    The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism

    Get PDF
    Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions

    The Australasian COVID-19 Trial (ASCOT) to assess clinical outcomes in hospitalised patients with SARS-CoV-2 infection (COVID-19) treated with lopinavir/ritonavir and/or hydroxychloroquine compared to standard of care: A structured summary of a study protocol for a randomised controlled trial

    Get PDF
    Objectives: To determine if lopinavir/ritonavir +/- hydroxychloroquine will reduce the proportion of participants who survive without requiring ventilatory support, 15 days after enrolment, in adult participants with non-critically ill SARS-CoV-2 infection. Trial design: ASCOT is an investigator-initiated, multi-centre, open-label, randomised controlled trial. Participants will have been hospitalised with confirmed COVID-19, and will be randomised 1:1:1:1 to receive lopinavir /ritonavir, hydroxychloroquine, both or neither drug in addition to standard of care management. Participants: Participants will be recruited from >80 hospitals across Australia and New Zealand, representing metropolitan and regional centres in both public and private sectors. Admitted patients will be eligible if aged ≥ 18 years, have confirmed SARS-CoV-2 by nucleic acid testing in the past 12 days and are expected to remain an inpatient for at least 48 hours from the time of randomisation. Potentially eligible participants will be excluded if admitted to intensive care or requiring high level respiratory support, are currently receiving study drugs or their use is contraindicated due to allergy, drug interaction or comorbidities (including baseline QTc prolongation of 470ms for women or 480ms for men), or death is anticipated imminently

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore