16 research outputs found
User-friendly tail bounds for sums of random matrices
This paper presents new probability inequalities for sums of independent,
random, self-adjoint matrices. These results place simple and easily verifiable
hypotheses on the summands, and they deliver strong conclusions about the
large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for
the norm of a sum of random rectangular matrices follow as an immediate
corollary. The proof techniques also yield some information about matrix-valued
martingales.
In other words, this paper provides noncommutative generalizations of the
classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff,
Hoeffding, and McDiarmid. The matrix inequalities promise the same diversity of
application, ease of use, and strength of conclusion that have made the scalar
inequalities so valuable.Comment: Current paper is the version of record. The material on Freedman's
inequality has been moved to a separate note; other martingale bounds are
described in Caltech ACM Report 2011-0