45 research outputs found

    A Gribov equation for the photon Green's function

    Full text link
    We present a derivation of the Gribov equation for the gluon/photon Green's function D(q). Our derivation is based on the second derivative of the gauge-invariant quantity Tr ln D(q), which we interpret as the gauge-boson `self-loop'. By considering the higher-order corrections to this quantity, we are able to obtain a Gribov equation which sums the logarithmically enhanced corrections. By solving this equation, we obtain the non-perturbative running coupling in both QCD and QED. In the case of QCD, alpha_S has a singularity in the space-like region corresponding to super-criticality, which is argued to be resolved in Gribov's light-quark confinement scenario. For the QED coupling in the UV limit, we obtain a \propto Q^2 behaviour for space-like Q^2=-q^2. This implies the decoupling of the photon and an NJLVL-type effective theory in the UV limit.Comment: 12 pages, 5 figures; version to be published in Eur. Phys. J.

    Scaling functions for O(4) in three dimensions

    Get PDF
    Monte Carlo simulation using a cluster algorithm is used to compute the scaling part of the free energy for a three dimensional O(4) spin model. The results are relevant for analysis of lattice studies of high temperature QCD.Comment: 12 pages, 6 figures, uses epsf.st

    The first dozen years of the history of ITEP Theoretical Physics Laboratory

    Full text link
    The theoretical investigations at ITEP in the years 1945-1958 are reviewed. There are exposed the most important theoretical results, obtained in the following branches of physics: 1) the theory of nuclear reactors on thermal neutrons; 2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in USA); 3) radiation theory; ~4) low temperature physics; 5) quantum electrodynamics and quantum field theories; 6) parity violation in weak interactions, the theory of β\beta-decay and other weak processes; 7) strong interaction and nuclear physics. To the review are added the English translations of few papers, originally published in Russian, but unknown (or almost unknown) to Western readers.Comment: 55 pages, 5 fig

    Logarithmic Corrections in the 2D XY Model

    Get PDF
    Using two sets of high-precision Monte Carlo data for the two-dimensional XY model in the Villain formulation on square L×LL \times L lattices, the scaling behavior of the susceptibility χ\chi and correlation length ξ\xi at the Kosterlitz-Thouless phase transition is analyzed with emphasis on multiplicative logarithmic corrections (lnL)2r(ln L)^{-2r} in the finite-size scaling region and (lnξ)2r(ln \xi)^{-2r} in the high-temperature phase near criticality, respectively. By analyzing the susceptibility at criticality on lattices of size up to 5122512^2 we obtain r=0.0270(10)r = -0.0270(10), in agreement with recent work of Kenna and Irving on the the finite-size scaling of Lee-Yang zeros in the cosine formulation of the XY model. By studying susceptibilities and correlation lengths up to ξ140\xi \approx 140 in the high-temperature phase, however, we arrive at quite a different estimate of r=0.0560(17)r = 0.0560(17), which is in good agreement with recent analyses of thermodynamic Monte Carlo data and high-temperature series expansions of the cosine formulation.Comment: 13 pages, LaTeX + 8 postscript figures. See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm

    Magnetic Oscillations in Dense Cold Quark Matter with Four-Fermion Interactions

    Get PDF
    The phase structures of Nambu-Jona-Lasinio models with one or two flavours have been investigated at non-zero values of μ\mu and HH, where HH is an external magnetic field and μ\mu is the chemical potential. In the phase portraits of both models there arise infinitely many massless chirally symmetric phases, as well as massive ones with spontaneously broken chiral invariance, reflecting the existence of infinitely many Landau levels. Phase transitions of first and second orders and a lot of tricritical points have been shown to exist in phase diagrams. In the massless case, such a phase structure leads unavoidably to the standard van Alphen-de Haas magnetic oscillations of some thermodynamical quantities, including magnetization, pressure and particle density. In the massive case we have found an oscillating behaviour not only for thermodynamical quantities, but also for a dynamical quantity as the quark mass. Besides, in this case we have non-standard, i.e. non-periodic, magnetic oscillations, since the frequency of oscillations is an HH-dependent quantity.Comment: latex, 29 pages, 8 figure

    Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg-ferromagnet EuS

    Full text link
    By inelastic scattering of polarized neutrons near the (200)-Bragg reflection, the susceptibilities and linewidths of the spin waves and the longitudinal spin fluctuations were determined separately. By aligning the momentum transfers q perpendicular to both \delta S_sw and the spontaneous magnetization M_s, we explored the statics and dynamics of these modes with transverse polarizations with respect to q. In the dipolar critical regime, where the inverse correlation length kappa_z(T) and q are smaller than the dipolar wavenumber q_d, we observe:(i) the static susceptibility of \delta S_sw^T(q) displays the Goldstone divergence while for \delta S_z^T(q) the Ornstein-Zernicke shape fits the data with a possible indication of a thermal(mass-)renormalization at the smallest q-values, i.e. we find indications for the predicted 1/q divergence of the longitudinal susceptibility; (ii) the spin wave dispersion as predicted by the Holstein-Primakoff theory revealing q_d=0.23(1)\AA^{-1}in good agreement with previous work in the paramagnetic and ferromagnetic regime of EuS; (iii) within experimental error, the (Lorentzian) linewidths of both modes turn out to be identical with respect to the q^2-variation, the temperature independence and the absolute magnitude. Due to the linear dispersion of the spin waves they remain underdamped for q<q_d. These central results differ significantly from the well known exchange dominated critical dynamics, but are quantitatively explained in terms of dynamical scaling and existing data for T>=T_C. The available mode-mode coupling theory, which takes the dipolar interactions fully into account, describes the gross features of the linewidths but not all details of the T- and q-dependencies. PACS: 68.35.Rh, 75.40.GbComment: 10 pages, 7 figure

    Critical Dynamics of Magnets

    Get PDF
    We review our current understanding of the critical dynamics of magnets above and below the transition temperature with focus on the effects due to the dipole--dipole interaction present in all real magnets. Significant progress in our understanding of real ferromagnets in the vicinity of the critical point has been made in the last decade through improved experimental techniques and theoretical advances in taking into account realistic spin-spin interactions. We start our review with a discussion of the theoretical results for the critical dynamics based on recent renormalization group, mode coupling and spin wave theories. A detailed comparison is made of the theory with experimental results obtained by different measuring techniques, such as neutron scattering, hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and magnetic relaxation, in various materials. Furthermore we discuss the effects of dipolar interaction on the critical dynamics of three--dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a discussion of the consequences of dipolar anisotropies on the existence of magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and antiferromagnets. We close our review with a formulation of critical dynamics in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included

    On the analysis of the pi -> e nu gamma experimental data

    Full text link
    The most general amplitude for the radiative pion decay pi -> e nu gamma including terms beyond V-A theory is considered. The experimental constraints on the decay amplitude components are discussed. A model independent presentation of the results of high statistics and high resolution experiments is suggested.Comment: 5 pages, 2 figure

    Towards a renormalizable standard model without fundamental Higgs scalar

    Full text link
    We investigate the possibility of constructing a renormalizable standard model with purely fermionic matter content. The Higgs scalar is replaced by point-like fermionic self-interactions with couplings growing large at the Fermi scale. An analysis of the UV behavior in the point-like approximation reveals a variety of non-Gaussian fixed points for the fermion couplings. If real, such fixed points would imply nonperturbative renormalizability and evade triviality of the Higgs sector. For point-like fermionic self-interactions and weak gauge couplings, one encounters a hierarchy problem similar to the one for a fundamental Higgs scalar.Comment: 18 pages, 4 figure

    Constraints on possible phase transitions above the nuclear saturation density

    Get PDF
    We compare different models for hadronic and quark phases of cold baryon-rich matter in an attempt to find a deconfinement phase transition between them. For the hadronic phase we consider Walecka-type mean-field models which describe well the nuclear saturation properties. We also use the variational chain model which takes into account correlation effects. For the quark phase we consider the MIT bag model, the Nambu-Jona-Lasinio and the massive quasiparticle models. By comparing pressure as a function of baryon chemical potential we find that crossings of hadronic and quark branches are possible only in some exceptional cases while for most realistic parameter sets these branches do not cross at all. Moreover, the chiral phase transition, often discussed within the framework of QCD motivated models, lies in the region where the quark phases are unstable with respect to the hadronic phase. We discuss possible physical consequences of these findings.Comment: 28 pages, 18 PostScript figures, submitted to Phys. Rev.
    corecore