35 research outputs found

    Measurement of RudsR_{\text{uds}} and RR between 3.12 and 3.72 GeV at the KEDR detector

    Get PDF
    Using the KEDR detector at the VEPP-4M e+ee^+e^- collider, we have measured the values of RudsR_{\text{uds}} and RR at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than 3.3%3.3\% at most of energy points with a systematic uncertainty of about 2.1%2.1\%. At the moment it is the most accurate measurement of R(s)R(s) in this energy range

    New precise determination of the \tau lepton mass at KEDR detector

    Full text link
    The status of the experiment on the precise τ\tau lepton mass measurement running at the VEPP-4M collider with the KEDR detector is reported. The mass value is evaluated from the τ+τ\tau^+\tau^- cross section behaviour around the production threshold. The preliminary result based on 6.7 pb1^{-1} of data is mτ=1776.800.23+0.25±0.15m_{\tau}=1776.80^{+0.25}_{-0.23} \pm 0.15 MeV. Using 0.8 pb1^{-1} of data collected at the ψ\psi' peak the preliminary result is also obtained: ΓeeBττ(ψ)=7.2±2.1\Gamma_{ee}B_{\tau\tau}(\psi') = 7.2 \pm 2.1 eV.Comment: 6 pages, 8 figures; The 9th International Workshop on Tau-Lepton Physics, Tau0

    Measurement of \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-) and \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)

    Get PDF
    The products of the electron width of the J/\psi meson and the branching fraction of its decays to the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-positron collider. The results are \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-)=(0.3323\pm0.0064\pm0.0048) keV, \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)=(0.3318\pm0.0052\pm0.0063) keV. Their combinations \Gamma_{ee}\times(\Gamma_{ee}+\Gamma_{\mu\mu})/\Gamma=(0.6641\pm0.0082\pm0.0100) keV, \Gamma_{ee}/\Gamma_{\mu\mu}=1.002\pm0.021\pm0.013 can be used to improve theaccuracy of the leptonic and full widths and test leptonic universality. Assuming e\mu universality and using the world average value of the lepton branching fraction, we also determine the leptonic \Gamma_{ll}=5.59\pm0.12 keV and total \Gamma=94.1\pm2.7 keV widths of the J/\psi meson.Comment: 7 pages, 6 figure

    Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector

    Full text link
    We report results of a search for narrow resonances in e+ e- annihilation at center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained (at 90 % C.L.)

    Measurement of main parameters of the \psi(2S) resonance

    Get PDF
    A high-precision determination of the main parameters of the \psi(2S) resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-} collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the energy dependence of the multihadron cross section in the vicinity of the \psi(2S) we obtained the mass value M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h} = 2.233 +- 0.015 +- 0.037 +- 0.020 keV. The third error quoted is an estimate of the model dependence of the result due to assumptions on the interference effects in the cross section of the single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this work. Implicitly, the same assumptions were employed to obtain the charmonium leptonic width and the absolute branching fractions in many experiments. Using the result presented and the world average values of the electron and hadron branching fractions, one obtains the electron partial width and the total width of the \psi(2S): \Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV, \Gamma = 296 +- 2 +- 8 +- 3 keV. These results are consistent with and more than two times more precise than any of the previous experiments

    Current surgical treatment options for ocular complications of Stevens-Johnson and Lyell's syndromes

    Get PDF
    V.F. Chernysh, N.N. Haritonova, A.N. Kulikov, P.A. Kacherovich, A.A. Kol'bin S.M. Kirov Military Medical Academy, St. Petersburg, Russian Federation Epidermolytic drug reactions (EDR) are severe acute drug-induced allergic disorders characterized by extensive lesions of the skin and mucous membranes. Drug-induced Stevens-Johnson and Lyell's syndromes manifested with acute skin and mucous membrane disorders and often leading to lethal outcome may affect eyelids and ocular surface with different levels of severity and thus can cause serious functional ocular complications. The authors present two clinical reports of patients with ocular EDR manifestations in acute and long-term time periods and review the currently available effective treatment options for patients with such ocular complications and their consequences. The article describes surgical treatments which enabled to achieve satisfactory anatomical and functional results in patients with the above disorders. Timely treatment of Stevens-Johnson and Lyell's syndromes comprising systemic and topical conservative therapy in combination with surgical procedures during the acute stage plays an important role for the prediction of severe long-term ocular complications. The elimination of ocular complications caused by these syndromes is associated with multistage reconstructive surgery. The authors emphasize that long-term follow-up by ophthalmologist will be required for patients who survived Stevens-Johnson and Lyell's syndromes. Keywords: epidermolytic drug reactions, Stevens–Johnson syndrome, Lyell's syndrome, amniotic membrane transplantation, dry eye syndrome, pseudomembranous blepharoconjunctivitis, multistage reconstructive surgery. For citation: Chernysh V.F., Haritonova N.N., Kulikov A.N. et al. Current surgical treatment options for ocular complications of Stevens-Johnson and Lyell's syndromes. Russian Journal of Clinical Ophthalmology. 2023;23(2):99–106 (in Russ.). DOI: 10.32364/2311-7729-2023-23-2-99-106. <br

    The metabolites of autotrophic and heterotrophic leaves of amaranthus tricolor L. early splendor variety [МЕТАБОЛИТЫ АВТОТРОФНЫХ И ГЕТЕРОТРОФНЫХ ЛИСТЬЕВ АМАРАНТА Amaranthus tricolor L. СОРТА EARLY SPLENDOR]

    No full text
    An important area of systemic biology (metabolomics) is the study of the composition and properties of low-molecular metabolites of agricultural plants with different modes of nutrition. The use of metabolic technologies expands the possibilities of analyzing biochemical changes in the composition and structural modifications of metabolites occurring during the transition from autotrophic to heterotrophic nutrition. Most photosynthetic plants are capable of autotrophic nutrition, but in their lifetime, there are periods of appearance of the achlorophyllic organs which receive nutritients from the organic substances stored earlier. Thus, among Amaranthus tricolor L. plants there are varieties with leaves which differ from each other in the way of nutrition. For example, Early Splendor variety plants form brightly colored red heterotrophic leaves along with green photosynthesis leaf blades at the end of the vegetative phase. The comparative study of the low-molecular metabolites composition in these leaves is important for understanding the relationship between heterotrophic and autotrophic nutrition in the whole plant. In this paper, significant qualitative differences in metabolites composition between autotrophic and heterotrophic leaves were stated for the first time during the metabolome analysis of water and alcohol extracts of heterotrophic and autotrophic amaranth leaves of Early Splendor variety using the method of gas chromato-mass spectrometry. It was found that the low-molecular metabolites of autotrophic and heterotrophic leaves contained both non-specific metabolites common for both type of nutrition and specific metabolites characteristic for each of the ways separately. On the one hand, it indicates the close interaction between two ways of nutrition and, on the other hand, the ability to synthesize and modify the metabolites which demonstrates partial autonomy of heterotrophic leaves. The purpose of the work is to study the composition of low-molecular metabolites and to identify new biologically active metabolites antioxidants in heterotrophic and autotrophic amaranth leaves of Early Splendor variety. Experiments were carried out in 2017-2019 with amaranth plants of the Early Splendor variety at the end of flowering-the beginning of seed formation phase. The plants were grown in a film greenhouse (the Federal Research Center for Vegetable Growing). The fresh red-colored heterotrophic leaves formed at the top of the main stem and the underlying photosynthetic leaves with a fully formed leaf blade were collected for analysis. The leaves were homogenized (T18 homogenizer, IKA, Germany) and extracted for 30 min at 24 °C with either 96 % ethanol or distilled water (leaves weighing batch: extragent 1:10). The metabolites were profiled by gas chromato-mass spectrometry method (GH-MC) with a chromograph GH-MC JMS-Q1050GC (JEOL Ltd., Japan). According to the mass spectra library of the NIST-5 National Institute of Standards and Technology (USA), a total of 87 metabolites were totally identified. Heterotrophic leaves contained 19 substances in water extracts and 38 metabolites in alcohol extracts, while photosynthetic leaves contained 21 substances in the water extract and 57 metabolites in alcohol extracts. Twenty-nine identical metabolites were found in water and alcohol extracts. In heterotrophic and autotrophic amaranth leaves of Early Splendor variety squalene (C30H50), a biologically active compound with antioxidant properties was identified for the first time. Also, in heterotrophic leaves monopelargonine (monononanoin) (C15H11O7) was identified. Monopelargonine is an intermediate product of flavonoid o-glycosylation, is referred to phenolic compounds and possesses high antioxidant activity. Metabolites have been identified that are present in both autotrophic and heterotrophic amaranth leaves, which suggests a close interaction of the two types of nutrition during the appearance, growth and development of heterotrophic leaves. At the same time, photosynthesizing leaves serve as donors of key metabolites for heterotrophic leaves, while the latter are not only acceptors, but also can synthesize and modify metabolites necessary for cell formation. Due to revealed rich composition of carbohydrates, essential amino acids, lipids and organic acids, the photosynthesizing leaf biomass is a source of antioxidants and biologically active substances. It should be stressed that not all metabolites were identified. Nevertheless, the set of metabolites that we identified in the photosynthetic leaves allows us to suggest these substances to be key and sufficient compounds for the construction and functioning of cells and tissues in heterotrophic leaves. © 2020 Russian Academy of Agricultural Sciences. All rights reserved

    Squeezed diapirs of the Chernyshev Swell (the Timan Pechora Basin): integrated study and petroleum habitat

    No full text
    A multidisciplinary study including 2D and 3D seismic surveying, magnetotelluric, gravimetric, and magnetometric measurements was conducted to unravel the geological structure of the Chernyshev Swell's and the adjacent areas of the Kosyu-Rogov Foredeep Basin. Integrated interpretation of these data and vintage information allowed the introduction of a new concept of this areas' structural development. It suggests that the structural evolution was largely influenced by the diapirism of the Upper Ordovician salt. The salt started to move towards the Chernyshev Swell from the Kosyu-Rogov Foredeep Basin with the development of diapiric walls as early as the Silurian. The salt walls underwent compression during the Uralian collisional folding from the second half of the Artinskian age. It resulted in the squeezing of the diapirs and salt's extrusion to the surface, followed by extensive thrusting. The salt-related deformations continued throughout the Mesozoic and Cenozoic activated by the intraplate stresses. The study area's structural evolution created favourable conditions for the development of a large oil and gas trap in the 3-way structural closure juxtaposed against the thrust zone. It includes regionally productive suprasalt Silu-rian-Permian deposits sealed updip by the allochthonous salt. © 2021, VNIGNI-2 OOO. All rights reserved
    corecore