1,093 research outputs found
Orthonormal sequences in and time frequency localization
We study uncertainty principles for orthonormal bases and sequences in
. As in the classical Heisenberg inequality we focus on the product
of the dispersions of a function and its Fourier transform. In particular we
prove that there is no orthonormal basis for for which the time and
frequency means as well as the product of dispersions are uniformly bounded.
The problem is related to recent results of J. Benedetto, A. Powell, and Ph.
Jaming.
Our main tool is a time frequency localization inequality for orthonormal
sequences in . It has various other applications.Comment: 18 page
On the speed of convergence to stationarity of the Erlang loss system
We consider the Erlang loss system, characterized by servers, Poisson arrivals and exponential service times, and allow the arrival rate to be a function of We discuss representations and bounds for the rate of convergence to stationarity of the number of customers in the system, and display some bounds for the total variation distance between the time-dependent and stationary distributions. We also pay attention to time-dependent rates
Phase coherence phenomena in superconducting films
Superconducting films subject to an in-plane magnetic field exhibit a gapless
superconducting phase. We explore the quasi-particle spectral properties of the
gapless phase and comment on the transport properties. Of particular interest
is the sensitivity of the quantum interference phenomena in this phase to the
nature of the impurity scattering. We find that films subject to columnar
defects exhibit a `Berry-Robnik' symmetry which changes the fundamental
properties of the system. Furthermore, we explore the integrity of the gapped
phase. As in the magnetic impurity system, we show that optimal fluctuations of
the random impurity potential conspire with the in-plane magnetic field to
induce a band of localized sub-gap states. Finally, we investigate the
interplay of the proximity effect and gapless superconductivity in thin normal
metal-superconductor bi-layers.Comment: 13 pages, 8 figures include
Gap Fluctuations in Inhomogeneous Superconductors
Spatial fluctuations of the effective pairing interaction between electrons
in a superconductor induce variations of the order parameter which in turn lead
to significant changes in the density of states. In addition to an overall
reduction of the quasi-particle energy gap, theory suggests that mesoscopic
fluctuations of the impurity potential induce localised tail states below the
mean-field gap edge. Using a field theoretic approach, we elucidate the nature
of the states in the `sub-gap' region. Specifically, we show that these states
are associated with replica symmetry broken instanton solutions of the
mean-field equations.Comment: 11 pages, 3 figures included. To be published in PRB (Sept. 2001
Finite Temperature Properties of Quantum Antiferromagnets in a Uniform Magnetic Field in One and Two Dimensions
Consider a -dimensional antiferromagnet with a quantum disordered ground
state and a gap to bosonic excitations with non-zero spin. In a finite external
magnetic field, this antiferromagnet will undergo a phase transition to a
ground state with non-zero magnetization, describable as the condensation of a
dilute gas of bosons. The finite temperature properties of the Bose gas in the
vicinity of this transition are argued to obey a hypothesis of ZERO
SCALE-FACTOR UNIVERSALITY for , with logarithmic violations in .
Scaling properties of various experimental observables are computed in an
expansion in , and exactly in .Comment: 27 pages, REVTEX 3.0, 8 Postscript figures appended, YCTP-xyz
Dynamical Renormalization Group Approach to Quantum Kinetics in Scalar and Gauge Theories
We derive quantum kinetic equations from a quantum field theory implementing
a diagrammatic perturbative expansion improved by a resummation via the
dynamical renormalization group. The method begins by obtaining the equation of
motion of the distribution function in perturbation theory. The solution of
this equation of motion reveals secular terms that grow in time, the dynamical
renormalization group resums these secular terms in real time and leads
directly to the quantum kinetic equation. We used this method to study the
relaxation in a cool gas of pions and sigma mesons in the O(4) chiral linear
sigma model. We obtain in relaxation time approximation the pion and sigma
meson relaxation rates. We also find that in large momentum limit emission and
absorption of massless pions result in threshold infrared divergence in sigma
meson relaxation rate and lead to a crossover behavior in relaxation. We then
study the relaxation of charged quasiparticles in scalar electrodynamics
(SQED). While longitudinal, Debye screened photons lead to purely exponential
relaxation, transverse photons, only dynamically screened by Landau damping
lead to anomalous relaxation, thus leading to a crossover between two different
relaxational regimes. We emphasize that infrared divergent damping rates are
indicative of non-exponential relaxation and the dynamical renormalization
group reveals the correct relaxation directly in real time. Finally we also
show that this method provides a natural framework to interpret and resolve the
issue of pinch singularities out of equilibrium and establish a direct
correspondence between pinch singularities and secular terms. We argue that
this method is particularly well suited to study quantum kinetics and transport
in gauge theories.Comment: RevTeX, 40 pages, 4 eps figures, published versio
Wigner crystal in snaked nanochannels
We study properties of Wigner crystal in snaked nanochannels and show that
they are characterized by conducting sliding phase at low charge densities and
insulating pinned phase emerging above a certain critical charge density. The
transition between these phases has a devil's staircase structure typical for
the Aubry transition in dynamical maps and the Frenkel-Kontorova model. We
discuss implications of this phenomenon for charge density waves in
quasi-one-dimensional organic conductors and for supercapacitors in nanopore
materials.Comment: 4 pages, 6 figs, research at http://www.quantware.ups-tlse.f
Final NOMAD results on nu_mu->nu_tau and nu_e->nu_tau oscillations including a new search for nu_tau appearance using hadronic tau decays
Results from the nu_tau appearance search in a neutrino beam using the full
NOMAD data sample are reported. A new analysis unifies all the hadronic tau
decays, significantly improving the overall sensitivity of the experiment to
oscillations. The "blind analysis" of all topologies yields no evidence for an
oscillation signal. In the two-family oscillation scenario, this sets a 90%
C.L. allowed region in the sin^2(2theta)-Delta m^2 plane which includes
sin^2(2theta)<3.3 x 10^{-4} at large Delta m^2 and Delta m^2 < 0.7 eV^2/c^4 at
sin^2(2theta)=1. The corresponding contour in the nu_e->nu_tau oscillation
hypothesis results in sin^2(2theta)<1.5 x 10^{-2} at large Delta m^2 and Delta
m^2 < 5.9 eV^2/c^4 at sin^2(2theta)=1. We also derive limits on effective
couplings of the tau lepton to nu_mu or nu_e.Comment: 46 pages, 16 figures, Latex, to appear on Nucl. Phys.
Organizational and Leadership Implications for Transformational Development
Transformational development is a concept of change that originated in the Christian context but has now become generally used in the work of both secular and faith-based organizations. The growing use of the concept by organizations that are fundamentally different has naturally led to some confusion about what the concept means and what it takes to effectively implement it. In this article, we describe the key features of the concept and how they are important in determining the organizational requirements for its effective implementation. Drawing on a few cases, the paper highlights the centrality of faith in transformational development work
- …