630 research outputs found

    Towards spectral-domain optical coherence tomography on a silicon chip

    Get PDF
    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these instruments bulky and costly. A significant decrease in the size and cost of an OCT system is possible through the use of integrated optics, allowing for compact and low-cost OCT systems, especially suited for applications in which instrument size may play an important role. In this work, we present a miniaturized spectral-domain OCT (SD-OCT) system. We design an arrayed waveguide grating (AWG) spectrometer in silicon oxynitride for the 1300-nm spectral range. The spectral range of the SD-OCT system near 1300 nm is specifically selected for skin imaging. We aim at 18-μm depth resolution (determined by the full width at half maximum values of the transmission spectrum of the AWG) and a 1-mm depth range (determined by the wavelength spacing per output waveguide). The free spectral range of 78 nm and wavelength resolution of 0.4 nm of the AWG are determined to meet these requirements. We use ahe fiber-based SD-OCT system with AWG spectrometer. The Michelson interferometer is illuminated using a superluminescent diode which has a Gaussian-like spectrum with a bandwidth of 40 nm and a central wavelength of 1300 nm. Via a circulator the light is coupled into a 90/10 beamsplitter. Polarization controllers are placed into both, sample and reference arm. The backreflected light is redirected through the optical circulator to the AWG spectrometer. The collimated beam is imaged with a camera lens onto a 46 kHz CCD linescan camera. The acquired spectra are processed by first subtracting the reference arm spectrum, then compensating the dispersion, and finally resampling to k-space. We achieve a depth range of 1mm. The measured signal-to-noise ratio (SNR) is 75 dB. The axial resolution (FWHM) is determined from a Gaussian fit to the point spread function in amplitude at various depths. A slight decrease in depth resolution is observed at higher depth ranges, which we attribute to misalignment and lens aberrations. As a demonstration of OCT imaging using the AWG spectrometer, an image of a layered phantom is recorded. The phantom consists of three layers of scattering medium (µs = 4 mm-1, refractive index n = 1.41) interleaved with non-scattering tape. We can observe all three scattering layers up to the maximum imaging depth of 1 mm

    Integrated AWG spectrometer for on-chip optical coherence tomography and Raman spectroscopy

    Get PDF
    Silicon oxynitride-based arrayed waveguide grating (AWG) spectrometers were designed for on-chip spectral-domain optical coherence tomography (OCT) systems and Raman spectroscopy of the skin. A novel geometrical layout for Raman spectroscopy was introduced to reduce loss. Measurements show that integrated optics has a good potential for miniaturizing current OCT systems

    SiON integrated optics elliptic couplers for Fizeau-based Optical Coherence Tomography

    Get PDF
    The use of integrated optics for Optical Coherence Tomography (OCT) can offer significant cost reductions and new applications. We designed, fabricated, and characterized Silicon oxynitride (SiON) elliptic couplers that are used to focus light from a chip into the off-chip environment. Fizeau-based OCT measurements are performed and compared to calculations

    Portable simulation framework for diffusion MRI

    Get PDF
    The numerical simulation of the diffusion MRI signal arising from complex tissue micro-structures is helpful for understanding and interpreting imaging data as well as for designing and optimizing MRI sequences. The discretization of the Bloch-Torrey equation by finite elements is a more recently developed approach for this purpose, in contrast to random walk simulations, which has a longer history. While finite element discretization is more difficult to implement than random walk simulations, the approach benefits from a long history of theoretical and numerical developments by the mathematical and engineering communities. In particular, software packages for the automated solutions of partial differential equations using finite element discretization, such as FEniCS, are undergoing active support and development. However, because diffusion MRI simulation is a relatively new application area, there is still a gap between the simulation needs of the MRI community and the available tools provided by finite element software packages. In this paper, we address two potential difficulties in using FEniCS for diffusion MRI simulation. First, we simplified software installation by the use of FEniCS containers that are completely portable across multiple platforms. Second, we provide a portable simulation framework based on Python and whose code is open source. This simulation framework can be seamlessly integrated with cloud computing resources such as Google Colaboratory notebooks working on a web browser or with Google Cloud Platform with MPI parallelization. We show examples illustrating the accuracy, the computational times, and parallel computing capabilities. The framework contributes to reproducible science and open-source software in computational diffusion MRI with the hope that it will help to speed up method developments and stimulate research collaborations.La Caixa 201

    Direct finite element simulation of turbulent flow for marine based renewable energy

    Get PDF
    In this article we present a computational framework for simulation of turbulent flow in marine based renewable energy applications. In particular, we focus on floating structures and rotating turbines. This work is an extension to multiphase turbulent flow, of our existing framework of residual based turbulence modeling for single phase turbulent incompressible flow. We illustrate the framework in four examples: a regular wave test where we compare against an exact solution, the standard MARIN wave impact benchmark with experimental validation data, a vertical axis turbine with complex geometry from an existing turbine, and finally a prototype simulation of decay test in a coupled moving boundary rigid-body and two-phase fluid simulation.IEA-OES Task 1

    Towards a sensitive search for variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    Full text link
    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant (α\alpha) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\bf 59}, 230 (1999)]. We analyze here an experimental realization of the proposed search in progress in our laboratory, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of |\adota| \sim 10^{-18}/yr may be achieved and discuss possible systematic effects that may limit such a measurement.Comment: 8 pages, 7 figure
    • …
    corecore