15 research outputs found

    Pulse Shape Analysis with scintillating bolometers

    Full text link
    Among the detectors used for rare event searches, such as neutrinoless Double Beta Decay (0ν\nuDBD) and Dark Matter experiments, bolometers are very promising because of their favorable properties (excellent energy resolution, high detector efficiency, a wide choice of different materials used as absorber, ...). However, up to now, the actual interesting possibility to identify the interacting particle, and thus to greatly reduce the background, can be fulfilled only with a double read-out (i.e. the simultaneous and independent read out of heat and scintillation light or heat and ionization). This double read-out could greatly complicate the assembly of a huge, multi-detector array, such as CUORE and EURECA. The possibility to recognize the interacting particle through the shape of the thermal pulse is then clearly a very interesting opportunity. While detailed analyses of the signal time development in purely thermal detectors have not produced so far interesting results, similar analyses on macro-bolometers (∼\sim10-500 g) built with scintillating crystals showed that it is possible to distinguish between an electron or γ\gamma-ray and an α\alpha particle interaction (i.e. the main source of background for 0ν\nuDBD experiments based on the bolometric technique). Results on pulse shape analysis of a CaMoO4_4 crystal operated as bolometer is reported as an example. An explanation of this behavior, based on the energy partition in the heat and scintillation channels, is also presented.Comment: Presented at the 14th International Workshop on Low Temperature Detectors, proceedings to be published in the Journal of Low Temperature Physic

    Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    Get PDF
    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be differentiated using a single stimulation wavelength by measuring the time-resolved luminescence spectrum

    First test of a cryogenic scintillation module with a CaWO4 scintillator and a low-temperature photomultiplier down to 6 K

    Full text link
    Future cryogenic experiments searching for rare events require reliable, efficient and robust techniques for the detection of photons at temperatures well below that to which low-temperature photomultipliers (PMT) were characterised. Motivated by this we investigated the feasibility of a low-temperature PMT for the detection of scintillation from crystalline scintillators at T = 6 K. The scintillation module was composed of a CaWO4 scintillator and a low-temperature PMT D745B from ET Enterprises. The PMT responsivity was studied at T=290, 77 and 6 K using gamma-quanta from 241Am (60 keV) and 57Co (122 and 136 keV) sources. We have shown that the low-temperature PMT retains its single photon counting ability even at cryogenic temperatures. At T = 6 K, the response of the PMT decreases to 51 +- 13 % and 27 +- 6 % when assessed in photon counting and pulse height mode, respectively. Due to the light yield increase of the CaWO4 scintillating crystal the overall responsivity of the scintillation modules CaWO4+PMT is 94 +- 15 % (photon counting) and 48 +- 8 % (pulse height) when cooling to T = 6 K. The dark count rate was found to be 20 s-1. The energy resolution of the module remains similar to that measured at room temperature using either detection mode. It is concluded that commercially available low-temperature PMT are well suited for detection of scintillation light at cryogenic temperatures

    Electron and Gamma Background in CRESST Detectors

    Full text link
    The CRESST experiment monitors 300g CaWO_4 crystals as targets for particle interactions in an ultra low background environment. In this paper, we analyze the background spectra that are recorded by three detectors over many weeks of data taking. Understanding these spectra is mandatory if one wants to further reduce the background level, and allows us to cross-check the calibration of the detectors. We identify a variety of sources, such as intrinsic contaminations due to primordial radioisotopes and cosmogenic activation of the target material. In particular, we detect a 3.6keV X-ray line from the decay of 41-Ca with an activity of (26\pm4)\mu Bq, corresponding to a ratio 41-Ca/40-Ca=(2.2\pm0.3)\times10^{-16}.Comment: 7 pages, 12 figure
    corecore