44 research outputs found

    Scalar Field Probes of Power-Law Space-Time Singularities

    Full text link
    We analyse the effective potential of the scalar wave equation near generic space-time singularities of power-law type (Szekeres-Iyer metrics) and show that the effective potential exhibits a universal and scale invariant leading x^{-2} inverse square behaviour in the ``tortoise coordinate'' x provided that the metrics satisfy the strict Dominant Energy Condition (DEC). This result parallels that obtained in hep-th/0403252 for probes consisting of families of massless particles (null geodesic deviation, a.k.a. the Penrose Limit). The detailed properties of the scalar wave operator depend sensitively on the numerical coefficient of the x^{-2}-term, and as one application we show that timelike singularities satisfying the DEC are quantum mechanically singular in the sense of the Horowitz-Marolf (essential self-adjointness) criterion. We also comment on some related issues like the near-singularity behaviour of the scalar fields permitted by the Friedrichs extension.Comment: v2: 21 pages, JHEP3.cls, one reference adde

    Inflationary Theory and Alternative Cosmology

    Full text link
    Recently Hollands and Wald argued that inflation does not solve any of the major cosmological problems. We explain why we disagree with their arguments. They also proposed a new speculative mechanism of generation of density perturbations. We show that in their scenario the inhomogeneities responsible for the large scale structure observed today were generated at an epoch when the energy density of the hot universe was 10^{95} times greater than the Planck density. The only way to avoid this problem is to assume that there was a stage of inflation in the early universe.Comment: 17 pages, 1 fig, a discussion of a canonical measure of probability of inflation is adde

    Hyperbolic billiards of pure D=4 supergravities

    Full text link
    We compute the billiards that emerge in the Belinskii-Khalatnikov-Lifshitz (BKL) limit for all pure supergravities in D=4 spacetime dimensions, as well as for D=4, N=4 supergravities coupled to k (N=4) Maxwell supermultiplets. We find that just as for the cases N=0 and N=8 investigated previously, these billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac-Moody algebras. Hence, the dynamics is chaotic in the BKL limit. A new feature arises, however, which is that the relevant Kac-Moody algebra can be the Lorentzian extension of a twisted affine Kac-Moody algebra, while the N=0 and N=8 cases are untwisted. This occurs for N=5, N=3 and N=2. An understanding of this property is provided by showing that the data relevant for determining the billiards are the restricted root system and the maximal split subalgebra of the finite-dimensional real symmetry algebra characterizing the toroidal reduction to D=3 spacetime dimensions. To summarize: split symmetry controls chaos.Comment: 21 page

    Onset of inflation in inhomogeneous cosmology

    Full text link
    We study how the initial inhomogeneities of the universe affect the onset of inflation in the closed universe. We consider the model of a chaotic inflation which is driven by a massive scalar field. In order to construct an inhomogeneous universe model, we use the long wavelength approximation ( the gradient expansion method ). We show the condition of the inhomogeneities for the universe to enter the inflationary phase.Comment: 22 pages including 12 eps figures, RevTe

    Topological entropy for some isotropic cosmological models

    Full text link
    The chaotical dynamics is studied in different Friedmann-Robertson- Walker cosmological models with scalar (inflaton) field and hydrodynamical matter. The topological entropy is calculated for some particular cases. Suggested scheme can be easily generalized for wide class of models. Different methods of calculation of topological entropy are compared.Comment: Final version to appear in Phys. Rev D. Minor changes, typos corrected; 29 pages with 2 eps figure

    Kasner and Mixmaster behavior in universes with equation of state w \ge 1

    Full text link
    We consider cosmological models with a scalar field with equation of state w≥1w\ge 1 that contract towards a big crunch singularity, as in recent cyclic and ekpyrotic scenarios. We show that chaotic mixmaster oscillations due to anisotropy and curvature are suppressed, and the contraction is described by a homogeneous and isotropic Friedmann equation if w>1w>1. We generalize the results to theories where the scalar field couples to p-forms and show that there exists a finite value of ww, depending on the p-forms, such that chaotic oscillations are suppressed. We show that Z2Z_2 orbifold compactification also contributes to suppressing chaotic behavior. In particular, chaos is avoided in contracting heterotic M-theory models if w>1w>1 at the crunch.Comment: 25 pages, 2 figures, minor changes, references adde

    Chaos and Rotating Black Holes with Halos

    Get PDF
    The occurrence of chaos for test particles moving around a slowly rotating black hole with a dipolar halo is studied using Poincar\'e sections. We find a novel effect, particles with angular momentum opposite to the black hole rotation have larger chaotic regions in phase space than particles initially moving in the same direction.Comment: 9 pages, 4 Postscript figures. Phys. Rev. D, in pres

    Braneworld dynamics with the BraneCode

    Full text link
    We give a full nonlinear numerical treatment of time-dependent 5d braneworld geometry, which is determined self-consistently by potentials for the scalar field in the bulk and at two orbifold branes, supplemented by boundary conditions at the branes. We describe the BraneCode, an algorithm which we designed to solve the dynamical equations numerically. We applied the BraneCode to braneworld models and found several novel phenomena of the brane dynamics. Starting with static warped geometry with de Sitter branes, we found numerically that this configuration is often unstable due to a tachyonic mass of the radion during inflation. If the model admits other static configurations with lower values of de Sitter curvature, this effect causes a violent re-structuring towards them, flattening the branes, which appears as a lowering of the 4d effective cosmological constant. Braneworld dynamics can often lead to brane collisions. We found that in the presence of the bulk scalar field, the 5d geometry between colliding branes approaches a universal, homogeneous, anisotropic strong gravity Kasner-like asymptotic, irrespective of the bulk/brane potentials. The Kasner indices of the brane directions are equal to each other but different from that of the extra dimension.Comment: 38 pages, 10 figure

    3D heterotic string theory: new approach and extremal solutions

    Get PDF
    We develop a new formalism for the bosonic sector of low-energy heterotic string theory toroidally compactified to three dimensions. This formalism is based on the use of some single non-quadratic real matrix potential which transforms linearly under the action of subgroup of the three-dimensional charging symmetries. We formulate a new charging symmetry invariant approach for the symmetry generation and straightforward construction of asymptotically flat solutions. Finally, using the developed approach and the established formal analogy between the heterotic and Einstein-Maxwell theories, we construct a general class of the heterotic string theory extremal solutions of the Israel-Wilson-Perjes type. This class is asymptotically flat and charging symmetry complete; it includes the extremal solutions constructed before and possesses the non-trivial bosonic string theory limit.Comment: 20 pages in Late

    The arrow of time, black holes, and quantum mixing of large N Yang-Mills theories

    Get PDF
    Quantum gravity in an AdS spacetime is described by an SU(N) Yang-Mills theory on a sphere, a bounded many-body system. We argue that in the high temperature phase the theory is intrinsically non-perturbative in the large N limit. At any nonzero value of the 't Hooft coupling λ\lambda, an exponentially large (in N^2) number of free theory states of wide energy range (of order N) mix under the interaction. As a result the planar perturbation theory breaks down. We argue that an arrow of time emerges and the dual string configuration should be interpreted as a stringy black hole.Comment: 50 pages 3 figures uses harvma
    corecore