362 research outputs found

    Quantum Brownian motion under rapid periodic forcing

    Full text link
    We study the steady state behaviour of a confined quantum Brownian particle subjected to a space-dependent, rapidly oscillating time-periodic force. To leading order in the period of driving, the result of the oscillating force is an effective static potential which has a quantum dissipative contribution, VQDV_{QD}, which adds on to the classical result. This is shown using a coherent state representation of bath oscillators. VQDV_{QD} is evaluated exactly in the case of an Ohmic dissipation bath. It is strongest for intermediate values of the damping, where it can have pronounced effects.Comment: 11 Pages and 3 figures, Content change

    Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems

    Full text link
    The phenomenon of super-radiance (Dicke effect, coherent spontaneous radiation by a gas of atoms coupled through the common radiation field) is well known in quantum optics. The review discusses similar physics that emerges in open and marginally stable quantum many-body systems. In the presence of open decay channels, the intrinsic states are coupled through the continuum. At sufficiently strong continuum coupling, the spectrum of resonances undergoes the restructuring with segregation of very broad super-radiant states and trapping of remaining long-lived compound states. The appropriate formalism describing this phenomenon is based on the Feshbach projection method and effective non-Hermitian Hamiltonian. A broader generalization is related to the idea of doorway states connecting quantum states of different structure. The method is explained in detail and the examples of applications are given to nuclear, atomic and particle physics. The interrelation of the collective dynamics through continuum and possible intrinsic many-body chaos is studied, including universal mesoscopic conductance fluctuations. The theory serves as a natural framework for general description of a quantum signal transmission through an open mesoscopic system.Comment: 85 pages, 10 figure

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<ϵ1<0.0320 < \epsilon_1 < 0.032 and ϵ2+5.0ϵ1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models VϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    Fractal Spin Glass Properties of Low Energy Configurations in the Frenkel-Kontorova chain

    Full text link
    We study numerically and analytically the classical one-dimensional Frenkel-Kontorova chain in the regime of pinned phase characterized by phonon gap. Our results show the existence of exponentially many static equilibrium configurations which are exponentially close to the energy of the ground state. The energies of these configurations form a fractal quasi-degenerate band structure which is described on the basis of elementary excitations. Contrary to the ground state, the configurations inside these bands are disordered.Comment: revtex, 9 pages, 9 figure

    Cosmological constraints from galaxy clustering

    Get PDF
    In this manuscript I review the mathematics and physics that underpins recent work using the clustering of galaxies to derive cosmological model constraints. I start by describing the basic concepts, and gradually move on to some of the complexities involved in analysing galaxy redshift surveys, focusing on the 2dF Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky survey (SDSS). Difficulties within such an analysis, particularly dealing with redshift space distortions and galaxy bias are highlighted. I then describe current observations of the CMB fluctuation power spectrum, and consider the importance of measurements of the clustering of galaxies in light of recent experiments. Finally, I provide an example joint analysis of the latest CMB and large-scale structure data, leading to a set of parameter constraints.Comment: 30 pages, 13 figures. Lecture given at Third Aegean Summer School, The invisible universe: Dark matter and Dark energ

    From Regular to Chaotic States in Atomic Nuclei

    Full text link
    An interesting aspect of nuclear dynamics is the co--existence, in atomic nuclei, of regular and chaotic states. In the first part of the present work, we review the state of the art of nuclear dynamics and use a schematic shell model to show how a very simple and schematic nucleon--nucleon interaction can produce an order\tochaos transition. The second part is devoted to a discussion of the wave function behaviour and decay of chaotic states using some simple models (to be published in Rivista Nuovo Cimento).Comment: 65 pages, LaTex (the figures are not included), Preprint DFPD/94/TH/26, University of Padov

    The VIMOS Public Extragalactic Redshift Survey (VIPERS): On the correct recovery of the count-in-cell probability distribution function

    Get PDF
    We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this comparison we found that when the sampling is low (the average number of object per cell is around unity) it is necessary to use a parametric method to model the galaxy distribution. We used a set of mock catalogues of VIPERS, in order to verify if we were able to reconstruct the cell-count probability distribution once the observational strategy is applied. We find that in the simulated catalogues, the probability distribution of galaxies is better represented by a Gamma expansion than a Skewed Log-Normal. Finally, we correct the cell-count probability distribution function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying galaxy density function in VIPERS from redshift 0.50.5 to 1.11.1. We found very weak evolution of the probability density distribution function and that it is well approximated, independently from the chosen tracers, by a Gamma distribution.Comment: 14 pages, 11 figures, 2 table
    corecore