438 research outputs found

    Quantum Brownian motion under rapid periodic forcing

    Full text link
    We study the steady state behaviour of a confined quantum Brownian particle subjected to a space-dependent, rapidly oscillating time-periodic force. To leading order in the period of driving, the result of the oscillating force is an effective static potential which has a quantum dissipative contribution, VQDV_{QD}, which adds on to the classical result. This is shown using a coherent state representation of bath oscillators. VQDV_{QD} is evaluated exactly in the case of an Ohmic dissipation bath. It is strongest for intermediate values of the damping, where it can have pronounced effects.Comment: 11 Pages and 3 figures, Content change

    Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems

    Full text link
    The phenomenon of super-radiance (Dicke effect, coherent spontaneous radiation by a gas of atoms coupled through the common radiation field) is well known in quantum optics. The review discusses similar physics that emerges in open and marginally stable quantum many-body systems. In the presence of open decay channels, the intrinsic states are coupled through the continuum. At sufficiently strong continuum coupling, the spectrum of resonances undergoes the restructuring with segregation of very broad super-radiant states and trapping of remaining long-lived compound states. The appropriate formalism describing this phenomenon is based on the Feshbach projection method and effective non-Hermitian Hamiltonian. A broader generalization is related to the idea of doorway states connecting quantum states of different structure. The method is explained in detail and the examples of applications are given to nuclear, atomic and particle physics. The interrelation of the collective dynamics through continuum and possible intrinsic many-body chaos is studied, including universal mesoscopic conductance fluctuations. The theory serves as a natural framework for general description of a quantum signal transmission through an open mesoscopic system.Comment: 85 pages, 10 figure

    Constraining slow-roll inflation with WMAP and 2dF

    Get PDF
    We constrain slow-roll inflationary models using the recent WMAP data combined with data from the VSA, CBI, ACBAR and 2dF experiments. We find the slow-roll parameters to be 0<ϵ1<0.0320 < \epsilon_1 < 0.032 and ϵ2+5.0ϵ1=0.036±0.025\epsilon_2 + 5.0 \epsilon_1 = 0.036 \pm 0.025. For inflation models VϕαV \propto \phi^{\alpha} we find that α<3.9,4.3\alpha< 3.9, 4.3 at the 2σ\sigma and 3σ3\sigma levels, indicating that the λϕ4\lambda\phi^4 model is under very strong pressure from observations. We define a convergence criterion to judge the necessity of introducing further power spectrum parameters such as the spectral index and running of the spectral index. This criterion is typically violated by models with large negative running that fit the data, indicating that the running cannot be reliably measured with present data.Comment: 8 pages RevTeX4 file with six figures incorporate

    Fractal Spin Glass Properties of Low Energy Configurations in the Frenkel-Kontorova chain

    Full text link
    We study numerically and analytically the classical one-dimensional Frenkel-Kontorova chain in the regime of pinned phase characterized by phonon gap. Our results show the existence of exponentially many static equilibrium configurations which are exponentially close to the energy of the ground state. The energies of these configurations form a fractal quasi-degenerate band structure which is described on the basis of elementary excitations. Contrary to the ground state, the configurations inside these bands are disordered.Comment: revtex, 9 pages, 9 figure

    Cosmological constraints from galaxy clustering

    Get PDF
    In this manuscript I review the mathematics and physics that underpins recent work using the clustering of galaxies to derive cosmological model constraints. I start by describing the basic concepts, and gradually move on to some of the complexities involved in analysing galaxy redshift surveys, focusing on the 2dF Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky survey (SDSS). Difficulties within such an analysis, particularly dealing with redshift space distortions and galaxy bias are highlighted. I then describe current observations of the CMB fluctuation power spectrum, and consider the importance of measurements of the clustering of galaxies in light of recent experiments. Finally, I provide an example joint analysis of the latest CMB and large-scale structure data, leading to a set of parameter constraints.Comment: 30 pages, 13 figures. Lecture given at Third Aegean Summer School, The invisible universe: Dark matter and Dark energ

    From Regular to Chaotic States in Atomic Nuclei

    Full text link
    An interesting aspect of nuclear dynamics is the co--existence, in atomic nuclei, of regular and chaotic states. In the first part of the present work, we review the state of the art of nuclear dynamics and use a schematic shell model to show how a very simple and schematic nucleon--nucleon interaction can produce an order\tochaos transition. The second part is devoted to a discussion of the wave function behaviour and decay of chaotic states using some simple models (to be published in Rivista Nuovo Cimento).Comment: 65 pages, LaTex (the figures are not included), Preprint DFPD/94/TH/26, University of Padov

    Progress in Classical and Quantum Variational Principles

    Full text link
    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics, in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis Principle is the classical limit of Schr\"{o}dinger's variational principle of wave mechanics, and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems

    Parametrization of Born-Infeld Type Phantom Dark Energy Model

    Full text link
    Applying the parametrization of dark energy density, we can construct directly independent-model potentials. In Born-Infeld type phantom dark energy model, we consider four special parametrization equation of state parameter. The evolutive behavior of dark energy density with respect to red-shift zz, potentials with respect to ϕ\phi and zz are shown mathematically. Moreover, we investigate the effect of parameter η\eta upon the evolution of the constructed potential with respect to zz. These results show that the evolutive behavior of constructed Born-Infeld type dark energy model is quite different from those of the other models.Comment: 5 pages, 4 figures, Accepted for publication in Astrophysics & Space Scienc

    Cosmological constraints on the generalized holographic dark energy

    Full text link
    We use the Markov ChainMonte Carlo method to investigate global constraints on the generalized holographic (GH) dark energy with flat and non-flat universe from the current observed data: the Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. The most stringent constraints on the GH model parameter are obtained. In addition, it is found that the equation of state for this generalized holographic dark energy can cross over the phantom boundary wde =-1.Comment: 14 pages, 5 figures. arXiv admin note: significant text overlap with arXiv:1105.186
    corecore