5,812 research outputs found

    Exclusive Photoproduction of Large Momentum-Transfer K and K* Mesons

    Full text link
    The reactions gamma p -> K+ Lambda and gamma p -> K* Lambda are analyzed within perturbative QCD, allowing for diquarks as quasi-elementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution amplitudes of proton and Lambda are taken from previous investigations of electromagnetic baryon form factors and Compton-scattering off protons. Unpolarized differential cross sections and polarization observables are computed for different choices of the K and K* distribution amplitudes. The asymptotic form of the K distribution amplitude (proportional to x1 x2) is found to provide a satisfactory description of the K photoproduction data.Comment: 32 pages, 7 figures available as tared, compressed and uuencoded PS-file

    Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds

    Get PDF
    A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA) from simple and substituted cycloalkenes (C5-C8) is produced in dark ozonolysis experiments in a dry chamber (RH~5%). Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH). Using the hygroscopicity tandem differential mobility analyzer (HTDMA), we measure the diameter-based hygroscopic growth factor (GF) of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the biogenic SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic), and formation of longer-chained oligomers (less hygroscopic). All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.11 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg) in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or ''ZSR'' approach) and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different HTDMA-classified diameters agree with each other to varying degrees. Lack of complete agreement may be a result of the non-idealities of the solutions that are not captured by the ZSR method. Comparing growth factors from different precursors, we find that GForg is inversely proportional to the precursor molecular weight and SOA yield, which is likely a result of the fact that higher-molecular weight precursors tend to produce larger and less hygroscopic oxidation products

    Hard exclusive photoproduction of Φ\Phi mesons

    Full text link
    We calculate the differential cross section and single-polarization observables for the reaction γp→Φp\gamma p \to \Phi p within perturbative QCD, treating the proton as a quark-diquark system. The phenomenological couplings of gauge bosons to (spatially extended) diquarks and the quark-diquark distribution amplitude of the proton are adopted from previous investigations of baryon form factors and two-photon processes. Going beyond leading order, we take into account hadron-mass effects by means of a systematic expansion in the small parameter (hadron mass/ photon energy). With the Φ\Phi-meson distribution amplitude taken from the literature our predictions for the differential cross section at | t | \agt 4 \text{GeV}^2 seem to provide a reasonable extrapolation of the low-t data and are also comparable in magnitude with the results of a two-gluon exchange model in which the gluons are considered as a remnant of the pomeron. For momentum transfers of a few GeV hadron-mass effects appear still to be sizeable.Comment: 37 pages, 7 figures, uses RevTeX styl

    One-loop self-energy correction to the 1s and 2s hyperfine splitting in H-like systems

    Get PDF
    The one-loop self-energy correction to the hyperfine splitting of the 1s and 2s levels in H-like low-Z atoms is evaluated to all orders in Z\alpha. The results are compared to perturbative calculations. The residual higher-order contribution is evaluated. Implications to the specific difference of the hyperfine structure intervals 8\Delta \nu_2 - \Delta \nu_1 in He^+ are investigated.Comment: 17 pages, RevTeX, 3 figure

    Skewed parton distributions and the scale dependence of the transverse size parameter

    Get PDF
    We discuss the scale dependence of a skewed parton distribution of the pion obtained from a generalized light-cone wave function overlap formula. Using a simple ansatz for the transverse momentum dependence of the light-cone wave function and restricting ourselves to the case of a zero skewedness parameter, the skewed parton distribution can be expressed through an ordinary parton distribution multiplied by an exponential function. Matching the generalized and ordinary DGLAP evolution equations of the skewed and ordinary parton distributions, respectively, we derive a constraint for the scale dependence of the transverse size parameter, which describes the width of the pion wave function in transverse momentum space. This constraint has implications for the Fock state probability and valence distribution. We apply our results to the pion form factor.Comment: 10 pages, 4 figures; version to appear in Phys. Rev. D; Refs. added, new discussion of results for pion form factor in view of new dat

    Timelike form factors at high energy

    Full text link
    The difference between the timelike and spacelike meson form factors is analysed in the framework of perturbative QCD with Sudakov effects included. It is found that integrable singularities appear but that the asymptotic behavior is the same in the timelike and spacelike regions. The approach to asymptotia is quite slow and a rather constant enhancement of the timelike value is expected at measurable large Q2Q^{2}. This is in agreement with the trend shown by experimental data.Comment: 17 pages, report DAPNIA/SPhN 94 0

    Signals of Disoriented Chiral Condensate

    Full text link
    If a disoriented chiral condensate is created over an extended space-time region following a rapid cooling in hadronic or nuclear collisions, the misalignment of the condensate with the electroweak symmetry breaking can generate observable effects in the processes which involve both strong and electromagnetic interactions. We point out the relevance of the dilepton decay of light vector mesons as a signal for formation of the disoriented condensate. We predict that the decay \rho^0 to dileptons will be suppressed and/or the \rho resonance peak widens, while the decay \omega to dileptons will not be affected by the condensate.Comment: 13 pages in LaTeX, UCB-PTH-94/05, LBL-3533
    • …
    corecore