33,748 research outputs found

    Managing urban socio-technical change? Comparing energy technology controversies in three European contexts

    Get PDF
    A {\em local graph partitioning algorithm} finds a set of vertices with small conductance (i.e. a sparse cut) by adaptively exploring part of a large graph GG, starting from a specified vertex. For the algorithm to be local, its complexity must be bounded in terms of the size of the set that it outputs, with at most a weak dependence on the number nn of vertices in GG. Previous local partitioning algorithms find sparse cuts using random walks and personalized PageRank. In this paper, we introduce a randomized local partitioning algorithm that finds a sparse cut by simulating the {\em volume-biased evolving set process}, which is a Markov chain on sets of vertices. We prove that for any set of vertices AA that has conductance at most ϕ\phi, for at least half of the starting vertices in AA our algorithm will output (with probability at least half), a set of conductance O(ϕ1/2log1/2n)O(\phi^{1/2} \log^{1/2} n). We prove that for a given run of the algorithm, the expected ratio between its computational complexity and the volume of the set that it outputs is O(ϕ1/2polylog(n))O(\phi^{-1/2} polylog(n)). In comparison, the best previous local partitioning algorithm, due to Andersen, Chung, and Lang, has the same approximation guarantee, but a larger ratio of O(ϕ1polylog(n))O(\phi^{-1} polylog(n)) between the complexity and output volume. Using our local partitioning algorithm as a subroutine, we construct a fast algorithm for finding balanced cuts. Given a fixed value of ϕ\phi, the resulting algorithm has complexity O((m+nϕ1/2)polylog(n))O((m+n\phi^{-1/2}) polylog(n)) and returns a cut with conductance O(ϕ1/2log1/2n)O(\phi^{1/2} \log^{1/2} n) and volume at least vϕ/2v_{\phi}/2, where vϕv_{\phi} is the largest volume of any set with conductance at most ϕ\phi.Comment: 20 pages, no figure

    Test particle motion in a gravitational plane wave collision background

    Get PDF
    Test particle geodesic motion is analysed in detail for the background spacetimes of the degenerate Ferrari-Ibanez colliding gravitational wave solutions. Killing vectors have been used to reduce the equations of motion to a first order system of differential equations which have been integrated numerically. The associated constants of the motion have also been used to match the geodesics as they cross over the boundary between the single plane wave and interaction zones.Comment: 11 pages, 6 Postscript figure

    Magnon-photon coupling in the noncollinear magnetic insulator Cu 2 OSeO 3

    Get PDF
    Anticrossing behavior between magnons in the noncollinear chiral magnet Cu2OSeO3 and a two-mode X-band microwave resonator was studied in the temperature range 5–100 K. In the field-induced ferrimagnetic phase, we observed a strong-coupling regime between magnons and two microwave cavity modes with a cooperativity reaching 3600. In the conical phase, cavity modes are dispersively coupled to a fundamental helimagnon mode, and we demonstrate that the magnetic phase diagram of Cu2OSeO3 can be reconstructed from the measurements of the cavity resonance frequency. In the helical phase, a hybridized state of a higher-order helimagnon mode and a cavity mode—a helimagnon polariton—was found. Our results reveal a class of magnetic systems where strong coupling of microwave photons to nontrivial spin textures can be observed

    The stability of Killing-Cauchy horizons in colliding plane wave space-times

    Get PDF
    It is confirmed rigorously that the Killing-Cauchy horizons, which sometimes occur in space-times representing the collision and subsequent interaction of plane gravitational waves in a Minkowski background, are unstable with respect to bounded perturbations of the initial waves, at least for the case in which the initial waves have constant aligned polarizations.Comment: 8 pages. To appear in Gen. Rel. Gra

    Efficacy of proximal femoral nail augmentation in unstable intertrochanteric fracture

    Get PDF
    Background: To assess the short term functional and radiological outcome of unstable intertrochanteric fracture fixation using proximal femoral nail with augmentation using Cannulated Cancellous (CC) screw or Stainless Steel (SS) wiring.Methods: A prospective study was conducted with 20 cases of unstable intertrochanteric femoral fractures from May 2017 to March 2019. Six females and fourteen male patients in the age group between 40 and 80 years were included in this study. There were 8 cases of AO31A2 and 12 cases of AO31 A3. Fracture were fixed by proximal femoral nail with augmentation by an additional CC screw or encirclage with SS wires to strengthen the lateral trochanteric wall.Results: Fracture union was achieved in all cases with a mean period of 15.4 weeks. Patients were followed up for a period of 6 months. At the end of follow up the Modified Harris Hip Score was found to be more than 90 % in 16 cases.Conclusion: Augmentation of proximal femoral nail in unstable intertrochanteric fracture with additional screw or cerclage wire increases the efficacy and stability of construct, aiding union and expedition of time to union
    corecore